期刊文献+

基于大脑层状皮质模型的立体图像质量评价 被引量:3

Stereoscopic image quality assessment based on laminar cortical model
原文传递
导出
摘要 通过模拟人脑视觉神经接收视觉信息形成表面感知的处理机制,提出一种基于大脑层状皮质模型的全参考立体图像的图像质量评价(IQA)方法。首先,分析大脑形成表面感知的过程,提出可运用于立体图像的IQA的层状皮质模型;然后依据模型得到各层的响应输出,构建感知特征向量;最后利用机器学习算法,建立特征和质量的关系模型,预测立体图像质量。实验结果表明,本文方法在对称立体图像库上的Pearson线性相关系数(PLCC)和Spearman等级系数(SROCC)高于0.91,在非对称库上高于0.93。与现有的相关方法相比,本文方法与主观评价更加吻合,更适合立体图像的评价和优化。 By simulating the human visual nerve′ s processing mechanism of receiving visual information to form surface perceptio n,this paper proposes a full-reference stereoscopic image quality assessment (I QA) method based on the laminar cortical model.In the proposed method,we firstly analyze the process of forming the surface perception in the human brain,and propose a laminar cortical model for quality prediction.Then,fea tures are extracted by getting the response output of each layer based on the model.Finally,a regression model is learned to map human subjective scores and features by machine learning algorithm to predict the qual ity of a stereoscopic image. Based on the model,experimental results on three public databases demonstrate t hat the Pearson linear correlation coefficient (PLCC) and Spearman rank order correlation c oefficient (SROCC) of the proposed method are higher than 0.91in symmetric database and are higher than 0.93in asymmetric databases .The proposed algorithm achieves higher agreement with subjective assessment compared with the most related existing methods,making it better suited for the evaluation and optimization of stereoscopic image.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2017年第5期529-537,共9页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61271021)资助项目
关键词 质量评价 人脑 层状皮质模型 视觉感知 quality assessment human brain laminar cortical model visual perception
  • 相关文献

参考文献2

二级参考文献41

  • 1Urey H,Cheliappan K V,Erden E,et al. State of the art instereoscopic and autostereoscopic displays [J]. Proc. ofthe IEEE,2011,99(4):540-555. 被引量:1
  • 2Sheikh H R,Bovik A C,Cormack L K. No-reference quali-ty assessment using natural scene statistics: JPEG2000[J]. IEEE Transactions on Image Processing,2005,14(11):1918-1927. 被引量:1
  • 3Ferzli R,Karam L J. A no-reference objective image sh-arpness metric based on the notion of just noticeable blur(JNB)[J]. IEEE Transactions onImageProcessing,2009,18(4):717-728. 被引量:1
  • 4Saad M A,Bovik A C,Charrier C. Blind image quality as-sessment: A natural scene statistics approach in the DCTdomain [J]. IEEE Transactions onImageProcessing,2012,21(8):3339-3352. 被引量:1
  • 5Mittal A,Moorthy A,Bovik A C. No-reference image quali-ty assessment in the spatial domain [J]. IEEE Transac-tions on Image Processing,2012,21-12:4695-4708. 被引量:1
  • 6Li L H,Tao D H,Gao X B,et al. Sparse representation forblind image quality assessment [A]. IEEE Conference onComputer Vision and Pattern Recognition(CVPR) [C].2012,1146-1153. 被引量:1
  • 7Li C F,Bovik A, Wu X J. Blind image quality assessmentusing a general regression neural network [J]. IEEETransactions on Neural Networks,2011,22(5) :793-799. 被引量:1
  • 8Gu K,Zhai G T,Yang X K,et al. No-reference stereosco-pic IQA approach:From nonlinear effect to parallax com-pensation [J].Journal of Electrical andComputer Engi-neering, 2012,2012:1-12. 被引量:1
  • 9Sazzad Z M,Akhter R,Baltes J,et al. Objective no-refer-ence stereoscopic image quality prediction based on 2Dimage features and relative disparity [J]. Advances inMultimedia,2012,2012(8) :1-16. 被引量:1
  • 10Shao F,Jiang G Y,Wang X,et al. Stereoscopic videocoding with asymmetric luminance and chrominance qual-ities [J]. IEEE Transactions on Consumer Electronics,2010,56(4):2460-2468. 被引量:1

共引文献12

同被引文献10

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部