期刊文献+

半监督支持向量机的空气处理机组夏季故障诊断 被引量:1

Fault diagnosis for air handing units in summer seasons based on semi-supervised support vector machines
下载PDF
导出
摘要 为解决空气处理机组在故障检测过程中难以获得大量带有类标记样本,且故障样本数据标记代价较高的问题,本文结合支持向量机与半监督学习方法,提出了针对空气处理机组故障检测的半监督学习算法.首先利用序列前向选择选出重要的特征作为分类依据,将半监督学习方法引入支持向量机的学习过程中,并使用遗传算法寻找支持向量机的最佳参数.然后选择类标记置信度高的未标记样本加入训练样本集,利用未标记样本中有利于支持向量机的信息,提高学习性能.实验表明,提出的混合算法能够在故障标记样本比较少的情况下达到较高的故障诊断率. To solve the problems of obtaining a large number of labeled samples and the high cost of marking fault data in the process of fault detection for air processing units, this paper presented a semi-supervised learning algorithm for air handling unit fault detection by combining support vector machines and the semi-supervised learning method. Firstly, the important features were selected by sequence forward selection as the classification basis. The semi-supervised learning method was introduced into the learning process of support vector machines, and the genetic algorithm was used to find the best parameters of support vector machines. Then, the unlabeled samples with high confidence in class markers were added to the training sample set, and the information in the unlabeled samples that was beneficial to the support vector machine was used to improve the learning performance. Experiments show that the hybrid algorithm proposed can achieve a higher fault diagnosis rate with fewer fault marker samples.
作者 钟超文 花君 严珂 陆慧娟 叶敏超 ZHONG Chaowen;HUA Jun;YAN Ke;LU Huijuan;YE Minchao(College of Information Engineering,China Jiliang University,Hangzhou 310018,China)
出处 《中国计量大学学报》 2018年第3期311-316,344,共7页 Journal of China University of Metrology
基金 国家自然科学基金项目(No.61602431)
关键词 故障检测 半监督 遗传算法 支持向量机 特征选择 空气处理机组 fault detection semi-supervised genetic algorithm support vector machine feature selection air handling unit
  • 相关文献

参考文献11

二级参考文献91

  • 1He Xiangning Yang Yuwen (Dept of Electrical Eng., Zhejiang University, Hangzhou 310027)Kuang Sheng(Department of Engineering, University of Cambridge, Cambridge, U.K.)Barry W. Williams Stephen J. Finney(Dept. of Computing & Electrical Eng., Heriot-Watt University, Edinburgh EH14 4AS, U.K.).COMPOSITE SOFT SWITCHING CONFIGURATION FOR INVERTERS USING BRIDGE LEG MODULES[J].Journal of Electronics(China),2001,18(1):61-69. 被引量:7
  • 2李树江,王媛波,吕梁年,秦军.多联机小型商用集中空调控制技术的现状及发展趋势[J].暖通空调,2007,37(5):33-39. 被引量:6
  • 3Zhu X J. Semi-Supervised Learning Literature Survey[ R]. Technical Report 1530, Department of Computer Science, University of Wisconsin at Madison, Madison, WI, December, 2007. 被引量:1
  • 4Miller D J, Uyar H S. A Mixture of Experts Classifier with Learning Based on Both Labeled and Unlabeled Data [J]. Advance in NIPS, 1997, 9:571 - 577. 被引量:1
  • 5Olivier Chapelle, Bernhard Scholkopf, Alexander Zien. Semi-Supervised Learning[ M]. Boston: MIT Press, 2006. 被引量:1
  • 6Zhou Z H, Zhan D C, Yang Q. Semi-Supervised Learning with Very Few Labeled Training Examples[C]//Twenty- Second AAAI Conference on Artificial Intelligence(AAAI- 07), 2007 : 1 - 4. 被引量:1
  • 7Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 2000. 被引量:1
  • 8Zhang Y Q, Shen D G. Design Efficient Support Vector Machine for Fast Classification [ J]. Pattern Recognition, 2005, 38:157 - 161. 被引量:1
  • 9Fung G M, Mangasarian O L. Proximal Support Vector Machine Classifiers[ C] // Provost F, Srikant R, eds. Proceedings KDD-2001: Knowledge Discovery and Data Mining, 2001:77 - 86. 被引量:1
  • 10Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods[ M ]. Cambridge: Cambridge University Press, 2000. 被引量:1

共引文献191

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部