期刊文献+

基于动态多种群粒子群支持向量机的短期负荷预测 被引量:7

Short-term Load Forecasting Approach Based on Support Vector Machine with Dynamic Multi-population Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对标准粒子群优化(PSO)算法存在易陷入局部极值点的缺点,提出了一种基于物种概念的动态多种群粒子群优化算法(DMPSO)。在DMPSO中引入了物种概念,在进化过程中动态确定物种,利用种群多样性信息动态调整物种半径,通过物种对解空间的不同区域进行搜索,最终确定出各极值点。将DMPSO算法和支持向量机(SVM)相结合,形成了解决电力系统短期负荷预测问题的新方法(DMPSO-SVM)。在该方法中利用DMPSO算法来优化SVM中的参数,利用快速傅立叶变换(FFT)进行频谱分析并确定SVM的输入量。电力系统短期负荷预测的实际算例表明,与传统预测方法相比,该方法具有更高的预测精度和鲁棒性。 Aiming at the precocious convergence problem of particle swarm optimization algorithm, a dynamic multi- population particle swarm optimization (DMPSO) algorithm is presented. In DMPSO algorithm, the notion of species is used to determine its neighborhood best values and the swarm population is divided into species subpopulations accord- ing to their similarity. Each of these species subpopulations is built around a dominating individual called the species seed. At each iteration step, species seeds are identified from the entire population and then adopted as neighborhood bests for these species groups separately. A strategy for adaptively changing the species radius based on population diversity information is proposed. During iterations, species subpopulations are able to simultaneously optimize toward potentially regions containing multiple optima. A new short-term load forecasting model based on SVM with DMPSO algorithm (DMPSO-SVM) is proposed in which the SVM's parameters are optimized by DMPSO algorithm and the input variables of the SVM are determined by fast Fourier transform(FFT). The example of electricity load data from California power market is used to illustrate the proposed DMPSO-SVM approach. The empirical results reveal that the DMP- SO-SVM approach outperforms the other traditional model.
出处 《计算机科学》 CSCD 北大核心 2008年第7期133-136,172,共5页 Computer Science
基金 国家自然科学基金资助项目(60274009) 教育部博士点基金资助项目(20020145007)
关键词 粒子群优化 动态多种群 物种 支持向量机 负荷预测 Particle swarm optimization, Dynamic multi-population, Species, Support vector machine, Load forecasting
  • 相关文献

参考文献11

  • 1Hsu C C,Chen C Y. Regional load forecasting in Taiwan.. applications of artificial neural networks[J]. Energy Convers. Manage. ,2003,44(12) : 1941-1949. 被引量:1
  • 2唐亮贵,程代杰.基于小波的支持向量机预测模型及应用[J].计算机科学,2006,33(3):202-204. 被引量:9
  • 3李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59. 被引量:277
  • 4Feng Pai Ping,Chang Hong Wei. Support vector machines with simulated annealing algorithms in electricity load forecasting[J]. Energy Conversion and Management,2005,46(3):2669-2688. 被引量:1
  • 5Kennedy J,Eberhart R. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE Press, 1995 : 1942-1948. 被引量:1
  • 6Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C// Proceedings of the Congress on Evolutionary Computing. IEEE Service Center, California USA, 2000 : 84-88. 被引量:1
  • 7Ursem R K. Multinational evolutionary algorithms[C]// Proceedings of Congress of Evolutionary Computation. Washington, DC, USA, 1999(3) : 1633-1640. 被引量:1
  • 8张浩然,韩正之,李昌刚.支持向量机[J].计算机科学,2002,29(12):135-137. 被引量:72
  • 9李华,张简政.基于模糊支持向量机的网络入侵检测研究[J].计算机科学,2005,32(11):77-80. 被引量:5
  • 10Yang Jingfei , Stenzel J . Historical load curve correction for short-term load forecasting[C]//Proceedings of The 7th International Pwer Engineering Conference. Singapore, IEEE Press, 2005:1-6. 被引量:1

二级参考文献26

  • 1He Xiangning Yang Yuwen (Dept of Electrical Eng., Zhejiang University, Hangzhou 310027)Kuang Sheng(Department of Engineering, University of Cambridge, Cambridge, U.K.)Barry W. Williams Stephen J. Finney(Dept. of Computing & Electrical Eng., Heriot-Watt University, Edinburgh EH14 4AS, U.K.).COMPOSITE SOFT SWITCHING CONFIGURATION FOR INVERTERS USING BRIDGE LEG MODULES[J].Journal of Electronics(China),2001,18(1):61-69. 被引量:7
  • 2Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882. 被引量:1
  • 3Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54. 被引量:1
  • 4Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004. 被引量:1
  • 5Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492. 被引量:1
  • 6Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287. 被引量:1
  • 7Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996. 被引量:1
  • 8Vapnik V N. The nature of statistical learning theory[M]. New York:Springer, 1995. 被引量:1
  • 9Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using support vector machines[C]. Proceedings of NNSP '97,Amelia Island,FL,1997. 被引量:1
  • 10Smola A J, Scholkopf B. A tutorial on support vector regression[R].NeuroCOLT Tech. Rep.TR 1998-030,Royal Holloway College,London, U.K,1998. 被引量:1

共引文献359

同被引文献102

引证文献7

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部