期刊文献+

一种基于支持向量机的半监督分类方法 被引量:18

A Novel Semi-Supervised Classification Method Based on SVM
下载PDF
导出
摘要 如何有效利用海量的数据是当前机器学习面临的一个重要任务,传统的支持向量机是一种有监督的学习方法,需要大量有标记的样本进行训练,然而有标记样本的数量是十分有限的并且非常不易获取。结合Co-training算法与Tri-training算法的思想,给出了一种半监督SVM分类方法。该方法采用两个不同参数的SVM分类器对无标记样本进行标记,选取置信度高的样本加入到已标记样本集中。理论分析和计算机仿真结果都表明,文中算法能有效利用大量的无标记样本,并且无标记样本的加入能有效提高分类的正确率。 One of the important assignment in machine learning is how to use large-scale data effectively,the traditional SVM is a kind of supervised learning approach,it needs a number of labeled samples for training,but the labeled samples are limited and very difficult to obtain.A semi-supervised SVM for classification is proposed by binding the thoughts of Co-training and Tri-training together.This method uses two SVM classifiers with different parameters to label the unlabeled samples,then chooses the samples with high confidence level to extend the labeled sample-set.Both theoretical analysis and simulation results indicatethat this method can use a lot of unlabeled samples effectively, and the addition of unlabeled samples can improve classification accuracy availably.
出处 《计算机技术与发展》 2010年第10期115-117,121,共4页 Computer Technology and Development
基金 国家自然科学基金(40671133)
关键词 半监督学习 支持向量机 遗传算法 semi-supervised learning support vector machine(SVM) genetic algorithm(GA)
  • 相关文献

参考文献13

  • 1Zhu X J.Semi-supervised learning literature survey[R].U.S.A:University of Wisconsin-Madison,2005. 被引量:1
  • 2易星..半监督学习若干问题的研究[D].清华大学,2004:
  • 3周志华,王珏主编..机器学习及其应用 2007[M].北京:清华大学出版社,2007:275.
  • 4Vapnik V.The Nature of Statistical Learning[M].New York:Springer,1995. 被引量:1
  • 5Ge M,Du R,Zhang C C,et al.Fault diagnosis using support vector machine with an application in sheet metal stamping operations[J].Mechanical Systems and Signal Processing,2004,18:143-159. 被引量:1
  • 6Guo G D,Li S Z.Content-based Audio Classification and Retrieval by Support Vector Machines[J].IEEE Trans.on Neural Network,2003,14(1):209-215. 被引量:1
  • 7边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 8Gunn S R.Support Vector Machines for Classification and Regression[R].Britain:University of Southampton,1997. 被引量:1
  • 9Cristianini N,Shawe-Taylor J.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].Beijing:Publishing House of Electronics Industry,2004. 被引量:1
  • 10张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2268

二级参考文献19

  • 1玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.. 被引量:396
  • 2Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:174
  • 3VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:171
  • 4Houston L,Barbour M T,Lenat D,et al.A multi-agency comparison of aquatic macroinvertebrate-based stream bioassessment methodologies[J].Ecological Indicators,2002( 1 ) : 279-292. 被引量:1
  • 5Simeonov V,Stefanov S,Tsakovski S.Environmetrical treatment of water quality survey data from yangtse river[J].Mikrochim Acta, 2000, 134(1-2) : 15-21. 被引量:1
  • 6Loke E,Wamaars E A,Jacobsen P,et al.Artificial neural networks as a .fool in urban storm damage[J].Water Seienee and Technology, 1997,36(8-9) : 101-110. 被引量:1
  • 7Vapnik V,The Nature of statistical learning[M].New York:Springer, 1995. 被引量:1
  • 8Ge M,Du R,Zhang C C,et al.Fault diagnosis using support vector machine with an application in sheet metal stamping operations[J]. Mechanical Systems and Signal Processing,2004,18:143-159. 被引量:1
  • 9Guo G D,Li S Z.Content-based audio classification and retrieval by support vector maehines[JJ.IEEE Trans on Neural Network,2003, 14( 1 ) :209-215. 被引量:1
  • 10Cristianini N,Shawe-Taylor J.An introduction to support vector machines and other kernel-based learning methods[M].Beijing: Publishing House of Electronics Industry,2004. 被引量:1

共引文献2297

同被引文献169

引证文献18

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部