期刊文献+

基于Tri-training的主动学习算法 被引量:3

Active Learning Algorithm Based on Tri-training
下载PDF
导出
摘要 半监督学习和主动学习都是利用未标记数据,在少量标记数据代价下同时提高监督学习识别性能的有效方法。为此,结合主动学习方法与半监督学习的Tri-training算法,提出一种新的分类算法,通过熵优先采样算法选择主动学习的样本。针对UCI数据集和遥感数据,在不同标记训练样本比例下进行实验,结果表明,该算法在标记样本数较少的情况下能取得较好的效果。将主动学习与Tri-training算法相结合,是提高分类性能和泛化性的有效途径。 Both semi-supervised learning and active learning attempt to exploit the unlabeled data to improve the recognition rate of supervised learning algorithms and minimize the cost of data labeling. So this paper proposes an algorithm to select samples in active learning such as Entropy Priority Sampling(EPS). It combines with the Tri-training algorithm and active learning method. Experimental results on both the UCI and image datasets under different proportion of marker training samples show that, this algorithm can obtain better result in the case of fewer labeled examples, and the combination of the active learning with semi-supervised learning is an effective way to improve the performance and generalization.
出处 《计算机工程》 CAS CSCD 2014年第6期215-218,229,共5页 Computer Engineering
基金 云南省教育厅科研基金资助项目(2010Y290 2012C098)
关键词 半监督学习 主动学习 Tri—training算法 熵优先采样 Tri-EPS算法 semi-supervised learning active learning Tri-training algorithm Entropy Priority Sampling(EPS) Tri-EPS algorithm
  • 相关文献

参考文献18

  • 1Zhu Xiaojin. Semi-supervised Learning Literature Survey[R]. Department of Computer Sciences, University of Wisconsin at Madison, Tech. Rep: 1530, 2008. 被引量:1
  • 2周志华,王珏主编..机器学习及其应用 2007[M].北京:清华大学出版社,2007:275.
  • 3Zhou Zhihua, Zhan Dechuan, Yang Qiang. Semi-supervised Learning with Very Few Labeled Training Examples[C]// Proceedings of the 22nd AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2007: 675-680. 被引量:1
  • 4杨伟,方涛,许刚.基于朴素贝叶斯的半监督学习遥感影像分类[J].计算机工程,2010,36(20):167-169. 被引量:8
  • 5Seeger M. Learning with Labeled and Unlabeled Data[R]. Institute for Adaptive and Neural Computation, University of Edinburgh, Tech. Rep.: EPFL-REPORT-161327, 2002. 被引量:1
  • 6Mohamed Farouk Abdel Hady,Friedhelm Schwenker.Combining Committee-Based Semi-Supervised Learning and Active Learning[J].Journal of Computer Science & Technology,2010,25(4):681-698. 被引量:6
  • 7吴伟宁,刘扬,郭茂祖,刘晓燕.基于采样策略的主动学习算法研究进展[J].计算机研究与发展,2012,49(6):1162-1173. 被引量:33
  • 8Lewis D, Gale W. A Sequential Algorithm for Training Text Classifiers[C]//Proceedings of the 17th ACM International Conference on Research and Development in Information Retrieval. Dublin, Ireland: ACM Press, 1994: 3-12. 被引量:1
  • 9Seuong H, Opper M, Sompolinski H. Query by Committee[C]// Proceedings of the 5th ACM Workshop on Computational Learning Theory. Pittsburgh, USA: ACM Press, 1992: 287-294. 被引量:1
  • 10Freund Y, Seung H S, Shamir E, et al. Selective Sampling Using the Query by Committee Algorithm[J]. Machine Learning, 1997, 28(2/3): 133-168. 被引量:1

二级参考文献146

  • 1Zhou Z H, Chen K J, Jiang Y. Exploiting unlabeled data in content-based image retrieval. In Proc. the 15th European Conf. Machine Learning ( ECML 2004), Pisa, Italy, Sept. 20- 24, 2004, pp.525-536. 被引量:1
  • 2Li M, Zhou Z H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Systems, Man and Cybernetics - Part A: Systems and Humans, 2007, 37(6): 1088-1098. 被引量:1
  • 3Levin A, Viola P, Freund Y. Unsupervised improvement of visual detectors using Co-Training. In Proc. the Int. Conf. Computer Vision, Graz, Austria, April 1-3, 2003, pp.626-633. 被引量:1
  • 4Nigam K, McCallum A K, Thrun S, Mitchell T. Text classification from labeled and unlabeled documents using EM. Machine Learning, 2000, 39(2/3): 103-134. 被引量:1
  • 5Kiritchenko S, Matwin S. Email classification with Co- Training. In Proc. the 2001 Conf. the Centre for Advanced Studies on Collaborative Research ( CASCON 2001), Toronto, Canada, Nov. 5-7, 2001, pp.8-19. 被引量:1
  • 6Nigam K, Ghani R. Analyzing the effectiveness and applicability of Co-Training. In Proc. the 9th Int. Conf. Information and Knowledge Management, McLean, USA, Nov. 6-11, 2000, pp.86-93. 被引量:1
  • 7Lewis D D, Gale A W. A sequential algorithm for training text classifiers. In Proc. the Special Interest Group on Info. Retrieval, Dublin, Irland, July 3-6, 1994, pp.3-12. 被引量:1
  • 8Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological, 1977, 39(1): 1-38. 被引量:1
  • 9Blum A, Mitchell T. Combining labeled and unlabeled data with Co-Training. In Proc. the 11th Annual Conf. Computational Learning Theory (COLT1998), Madison, USA, July 24-26, 1998, pp.92-100. 被引量:1
  • 10Muslea I, Minton S, Knoblock C A. Selective sampling with redundant views. In Proc. the 17th National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, Austin, USA, Jul. 30- Aug. 3, 2000, pp.621-626. 被引量:1

共引文献58

同被引文献22

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部