期刊文献+

基于样本条件价值改进的Co-training算法 被引量:4

Conditional Value-based Co-training
下载PDF
导出
摘要 Co-training是一种主流的半监督学习算法.该算法中两视图下的分类器通过迭代的方式,互为对方从无标记样本集中挑选新增样本,以更新对方训练集.Co-training以分类器的后验概率输出作为新增样本的挑选策略,该策略忽略了样本对于当前分类器的价值.针对该问题,本文提出一种改进的Co-training式算法—CVCOT(Conditional value-based co-training),即采用基于样本条件价值的挑选策略来优化Co-training.通过定义无标记样本的条件价值,各视图下的分类器以样本条件价值为依据来挑选新增样本,以此更新训练集.该策略既可保证新增样本的标记可靠性,又能优先将价值较高的富信息样本补充到训练集中,可以有效地优化分类器.在UCI数据集和网页分类应用上的实验结果表明:CVCOT具有较好的分类性能和学习效率. Co-training is one of the major semi-supervised learning methods, which iteratively trains two classifiers under two different views, and uses the predictions of either classifier on the unlabeled examples to augment the training set of the other. In each round of co-training, newly added examples are selected according to the classifier's posteriori probability output, which neglects examples~ value with respect to the current classifier. This paper proposes an improved co-training style algorithm, termed as CVCOT (conditional value-based co-training), which employs a conditional value- based strategy for selecting candidate training examples. Specifically, the conditional value of unlabeled examples in the co-training process is defined and computed, then it is utilized by either classifier under different views for augmenting the training set of the other. The new strategy can not only guarantee the reliability of the pseudo-labels, but also tends to add more informative examples with higher values to the training sets. Therefore, the classifier under either view will get refined. Experiments on UCI data sets and application to the web page classification task indicate that the CVCOT achieves better classification performance and learning efficiency.
出处 《自动化学报》 EI CSCD 北大核心 2013年第10期1665-1673,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61173087 61073128) 黑龙江省自然科学基金(F201021)资助~~
关键词 机器学习 半监督学习 CO-TRAINING 富信息样本 条件价值 Machine learning, semi-supervised learning, co-training, informative example, conditional value
  • 相关文献

参考文献30

  • 1Chapelle O,Scholkopf B,Zien A.Semi-Supervised Learning.Cambridge,MA:MIT Press,2006. 被引量:1
  • 2Blum A,Mitchell T.Combining labeled and unlabeled data with co-training.In:Proceedings of the 11th Annual Conference on Computational Learning Theory.Wisconsin,MI:ACM,1998.92-100. 被引量:1
  • 3Zhu X J.Semi-supervised Learning Literature Survey,Computer Science Technical Report 1530.University of Wisconsin Madison,USA,2008. 被引量:1
  • 4Pierce D,Cardie C.Limitations of co-training for natural language learning from large datasets.In:Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing.Pittsburgh,PA,2001.1-9. 被引量:1
  • 5Steedman M,Osborne M,Sarkar A,Clark S,Hwa R,Hockenmaier J,Ruhlen P,Baker S,Crim J.Bootstrapping statistical parsers from small datasets.In:Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics.Budapest,Hungary:Association for Computational Linguistics Stroudsburg,2003.331-338. 被引量:1
  • 6Li M,Li H,Zhou Z H.Semi-supervised document retrieval.Information Processing and Management,2009,45(3):341-355. 被引量:1
  • 7Li M,Zhou Z H.Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples.IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2007,37(6):1088-1098. 被引量:1
  • 8Mavroeidis D,Chaidos K,Pirillos S,Vazirgiannis M.Using tri-training and support vector machines for addressing the ECML-PKDD 2006 discovery challenge.In:Proceedings of the 2006 ECML-PKDD Discovery Challenge Workshop.Berlin,Germany,2006.39-47. 被引量:1
  • 9Settles B.Active Learning Literature Survey,Computer Science Technical Report 1648,University of Wisconsin-Madison,USA,2009. 被引量:1
  • 10Singh A,Nowak R D,Zhu X J.Unlabeled data:now it helps,now it doesn't.Advances in Neural Information Processing Systems.Cambridge:MIT Press,2008.1513-1520. 被引量:1

二级参考文献36

  • 1Settles B. Active Learning Literature Survey, Computer Science Technical Report 1648, University of Wisconsin- Madison, USA, 2009. 3-4. 被引量:1
  • 2Dasgupta S. Coarse sample complexity bounds for active learning. Advances in Neural Information Processing Sys- tems. Cambridge: The MIT Press, 2006. 235-242. 被引量:1
  • 3Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM Inter- national Conference on Multimedia. New York, USA: ACM, 2001. 107-118. 被引量:1
  • 4Tong S, Koller D. Support vector machine active learning with applications to text classification. The Journal of Ma- chine Learning Research, 2002, 2:45-66. 被引量:1
  • 5Seung H S, Opper M, Sompolinsky H. Query by commit- tee. In: Proceedings of the 5th Annual Workshop on Com- putational Learning Theory. New York, USA: ACM, 1992. 287-294. 被引量:1
  • 6Dagan I, Engelson S P. Committee-based sampling for train- ing probabilistic classifiers. In: Proceedings of the 12th International Conference on Machine Learning. California, USA: Morgan Kaufmann, 1995. 150-157. 被引量:1
  • 7Hoi S C H, Jin R, Lyu M R. Batch mode active learning with applications to text categorization and image retrieval. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1233-1248. 被引量:1
  • 8Joshi A J, Porikli F, Papanikolopoulos N. Multi-class ac- tive learning for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition. Miami, USA: IEEE, 2009. 2372-2379. 被引量:1
  • 9Zhu X J. Semi-supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison. USA. 2008. 11-13. 被引量:1
  • 10Riloff E, Wiebe J, Wilson T. Learning subjective nouns using extraction pattern bootstrapping. In: Proceedings of the 7th Conference on Natural Language Learning. Stroudsburg, USA: Association for Computational Linguis- tics, 2003. 25-32. 被引量:1

共引文献87

同被引文献29

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部