期刊文献+

基于仿射聚类的主动SVM多类分类方法

Active SVM multi-class classification method based on AP clustering
下载PDF
导出
摘要 针对现有的主动学习算法在多分类器应用中存在准确率低、速度慢等问题,将基于仿射传播(AP)聚类的主动学习算法引入到多分类支持向量机中,每次迭代主动选择最有利于改善多类SVM分类器性能的N个新样本点添加到训练样本点中进行学习,使得在花费较小标注代价情况下,能够获得较高的分类性能。在多个不同数据集上的实验结果表明,新方法能够有效地减少分类器训练时所需的人工标注样本点的数量,并获得较高的准确率和较好的鲁棒性。 For the shortcomings of active learning algorithm existing in multi-class classifier application,such as low accuracy,slow speed and so on,this paper presented an improved active learning algorithm and its application to multi-class SVM.It presented a novel optimization method of training samples with affinity propagation(AP) clustering algorithm and active learning algorithm for multi-class SVM classification problem.This method choose the most beneficial N new samples added to the training samples for learning in order to spend less marked cost and get a good classification performance.Indicated in many different data set experimental result that,the proposed method gives large reduction in the number of human labeled samples to achieve similar classification accuracy,and has little computational overhead and good robustness
出处 《计算机应用研究》 CSCD 北大核心 2012年第9期3316-3319,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2011AA010603)
关键词 仿射传播聚类 多分类支持向量机 主动学习算法 训练样本点优化 affinity propagation clustering multi-class support vector machine (SVM) active learning training sample optimization
  • 相关文献

参考文献11

  • 1NATSEV A, NAPHADE M. Learning the semantics of multimedia queries and concepts from a small number of examples [ C ] // PfOC of the 13th Annual ACM International Conference on Multi-media, 2005:598-607. 被引量:1
  • 2QI Guo-jun,HUA Xian-sheng,RUI Yong, et al. Two dimensional active learning for image classification [ C ] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2008:1-8. 被引量:1
  • 3TONG S, KOLLER D. Support vector machine active learning with applications to text classification [ J ]. The Journal of Machine Learning Research,2002,2:45 - 66. 被引量:1
  • 4JAIN P,KAPOOR A. Active Learning for Large Multi-class Problems [C ] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2009:762-769. 被引量:1
  • 5JOSHI A J’PORIKLI F. Multi-class active learning for image classification [C] // Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2009 ;2372-2379. 被引量:1
  • 6LIU Ru-jie, WANG Yue-hong,BABA T,e£ al. SVM-based active feedback in image retrieval Using clustering and unlabeled data[ J]. Pattern Recognition,2008,41 (8) :2645-2655. 被引量:1
  • 7FREY B J, DUECK D. Clustering by passing messages between data points[ J]. Science,2007,315(5814) :972-976. 被引量:1
  • 8陈荣,曹永锋,孙洪.基于主动学习和半监督学习的多类图像分类[J].自动化学报,2011,37(8):954-962. 被引量:74
  • 9ZHANG Xiang-liangfWANG Wei,NRVAG K,et al. K-AP:generating specified K clusters by efficient affinity propagation [ C ] //Proc of the 10th IEEE International Conference on Data Mining. 2010: 1187-1192. 被引量:1
  • 10FRANK A, ASUNCION A, UCI machine learning repository [ EB/ OL]. http://archive, ics. uci. edu/ml/citation_policy. html. 被引量:1

二级参考文献13

  • 1Settles B. Active Learning Literature Survey, Computer Science Technical Report 1648, University of Wisconsin- Madison, USA, 2009. 3-4. 被引量:1
  • 2Dasgupta S. Coarse sample complexity bounds for active learning. Advances in Neural Information Processing Sys- tems. Cambridge: The MIT Press, 2006. 235-242. 被引量:1
  • 3Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM Inter- national Conference on Multimedia. New York, USA: ACM, 2001. 107-118. 被引量:1
  • 4Tong S, Koller D. Support vector machine active learning with applications to text classification. The Journal of Ma- chine Learning Research, 2002, 2:45-66. 被引量:1
  • 5Seung H S, Opper M, Sompolinsky H. Query by commit- tee. In: Proceedings of the 5th Annual Workshop on Com- putational Learning Theory. New York, USA: ACM, 1992. 287-294. 被引量:1
  • 6Dagan I, Engelson S P. Committee-based sampling for train- ing probabilistic classifiers. In: Proceedings of the 12th International Conference on Machine Learning. California, USA: Morgan Kaufmann, 1995. 150-157. 被引量:1
  • 7Hoi S C H, Jin R, Lyu M R. Batch mode active learning with applications to text categorization and image retrieval. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1233-1248. 被引量:1
  • 8Joshi A J, Porikli F, Papanikolopoulos N. Multi-class ac- tive learning for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition. Miami, USA: IEEE, 2009. 2372-2379. 被引量:1
  • 9Zhu X J. Semi-supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison. USA. 2008. 11-13. 被引量:1
  • 10Riloff E, Wiebe J, Wilson T. Learning subjective nouns using extraction pattern bootstrapping. In: Proceedings of the 7th Conference on Natural Language Learning. Stroudsburg, USA: Association for Computational Linguis- tics, 2003. 25-32. 被引量:1

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部