摘要
该文研究了一类Chemostat模型的一致持续生存 ,该模型引入了周期环境和营养从吸收到转化为生物量的这种时滞。利用Pioncare映射将系统离散化 ,应用无穷维离散半动力系统的一致持续生存 ,给出了该系统一致持续生存的充分条件 。
Uniform persistence of a two nutrient Chemostat model is considered. The model incorporates periodic environment and time delay due to lapce between the uptake of nutrient by cells and the incorporation of the biomass. The model is discreted via pioncare map and sufficient conditions for uniform persistence of the model are obtained by the theory of infinite dimensional discrete semi dynamical systems.
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2002年第4期341-344,共4页
Journal of Nanjing University of Science and Technology
基金
国家自然科学基金资助项目(60 0 740 0 7)