摘要
考虑了一类具有增长时滞及脉冲输入的被污染的Beddington-DeAngelis恒化器模型,获得微生物灭绝周期解全局吸引的条件,并运用脉冲时滞微分方程的相关理论、方法和新的计算技巧,证明了系统在适当的条件下是持久的,结论还表明该时滞是有害时滞.
A Beddington-DeAngelies chemostat model is considered with delayed growth response and impulsive input concentration of the nutrient in a polluted environment.The sufficient conditions for the global attractivity of microorganism-extinction periodic solution are obtained.Furthermore,using corresponding theories,methods of impulsive delayed differential equation and new computational techniques,it is proved that the system is permanent under appropriate conditions.The results show that time delay is profitless.
出处
《应用数学》
CSCD
北大核心
2010年第3期523-530,共8页
Mathematica Applicata
关键词
恒化器模型
时滞
脉冲输入
持久性
灭绝
Chemostat model
Time delay
Impulsive
Permanence
Extinction