期刊文献+

一类新的污染环境下具有时滞增长反应及脉冲输入的Monod恒化器模型的定性分析 被引量:13

Global Qualitative Analysis of a New Monod Type Chemostat Model With Delayed Growth Response and Pulsed Input in a Polluted Environment
下载PDF
导出
摘要 考虑了一类新的污染环境下具有时滞增长反应及脉冲输入的Monod恒化器模型.运用离散动力系统的频闪映射,获得了一个‘微生物灭绝’周期解,进一步获得了该周期解全局吸引的充分条件.运用脉冲时滞泛函微分方程新的计算技巧,证明了系统在适当的条件下是持久的,结论还表明该时滞是"有害"时滞. A new Monod type chemostat model is considered with time delay and pulsed input concentration of the nutrient in a polluted environment. Using the discrete dynamical system determined by the stroboscopic map, a‘ microorganism-extinction' periodic solution is obtained. Further more, the sufficient conditions for the global attractivity of the microorganism-extinction periodic solution are established. Using new computational techniques for impulsive and delayed differential equation, it is proved that the system is permanent under appropriate conditions. The results show that time delay is "profitless".
出处 《应用数学和力学》 CSCD 北大核心 2008年第1期69-80,共12页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10471117 10771179)
关键词 持久性 脉冲输入 恒化器模型 增长反应时滞 灭绝 permanence impulsive input chemostat model time delay for growth response extinction
  • 相关文献

参考文献37

  • 1Hsu S B. A competition model for a seasonally fluctuating nutrient[J]. Journal of Mathematical Biology, 1980,9(2): 115-132. 被引量:1
  • 2Smith H L.Competitive coexistence in an oscillating chemostat[J].SIAM Journal on Applied Mathematics,1981,40(3):498-522. 被引量:1
  • 3Butler G J, Hsu S B, Waltman P. A mathematical model of the chemostat with periodic washout rate [ J ]. SIAM Journal on Applied Mathematics, 1985,45(3) :435-449. 被引量:1
  • 4Pilyugin S S,Waltman P.Competition in the unstirred chemostat with periodic input and washout [J].SIAM Journal on Applied Mathematics,1999,59(4):1157-1177. 被引量:1
  • 5Simth H L,Waltman P.The Theory of the Chemostat[M].Cambridge:Cambridge University Press,1995. 被引量:1
  • 6Hsu S B,Hubbell S P,Waltman P.A mathematical theory for single nutrient competition in continuous cultures of micro-organisms[J].SIAM journal on Applied Mathematics,1977,32(2):366-382. 被引量:1
  • 7Picket A M.Growth in a changing environment[A].In:bazin M J,Ed.Microbial population Dynamics[C].Florida:CRC Press,1982. 被引量:1
  • 8Monod J.La technique de culture continue: théorie et applications[J]. Ann Inst Pasteur, 1950, 79 (19) : 390-401. 被引量:1
  • 9Hansen S R, Hubbell S P. Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes[J]. Science, 1980,207(4438) : 1491-1493. 被引量:1
  • 10Barford J P,Pamment N B,Hall R J.Lag phases and transients[A].In:bazin M J,Ed,Microbial Population Dynamics[C].Florida:CRC Press,1982. 被引量:1

共引文献3

同被引文献28

引证文献13

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部