期刊文献+

脉冲中向量中立型抛物偏微分方程的H-振动性 被引量:20

H-Oscillation of Impulsive Vector Neutral Parabolic Partial Differential Equations
原文传递
导出
摘要 研究一类脉冲向量中立型抛物偏微分方程的振动性,借助Domslak引进的H-振动的概念及内积降维的方法,将多维振动问题化为一维脉冲中立型微分不等式不存在最终正解的问题,建立了该类方程在Dirichlet边值条件下所有解H-振动的若干充分判据,这里H是R^M中的单位向量. The oscillation of a class of impulsive vector neutral parabolic partial differential equations is studied. To change the multi-dimensional oscillation problems into the problems of which one-dimensional impulsive delay differential inequalities havenlt eventually positive solution by employing the concept of H-oscillation introduced by Domslak and the method of reducing dimension with the inner product, some sufficient criteria for H-oscillation of all solutions of the equations are established under Diriehlet boundary value condition, where H is a unit vector of R^M.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第2期257-262,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学天元基金资助项目(10626033) 湖南省教育厅科研计划项目(07C164)
关键词 H-振动性 向量 抛物偏微分方程 H-oscillation vector parabolic partial differential equation
  • 相关文献

参考文献7

  • 1Domslak Ju I., On the oscillation of solutions of vertor differential equations, Soviet Math. Dokl., 1970, 11: 839-841. 被引量:1
  • 2Courant R., Hilbert D., Methods of Mathematical Physics, Vol.I, New York: Interscience, 1996. 被引量:1
  • 3Minchev E., Yoshida N., Oscillation of solutions of vector differential equations of parabolic type with functional arguments, J. Comput. Appl. Math., 2003, 151(1): 107-117. 被引量:1
  • 4Li W. N., Han M. A., Meng F. W., H-oscillation of solutions of certain vector hyperbolic differential equations with deviating arguments, Appl. Math. Comput., 2004, 156(3): 637-653. 被引量:1
  • 5Li W. N., Han M. A., Oscillation of solutions for certain impulsive vector parabolic differential equations with delays, J. Math. Anal. Appl., 2007, 326(1): 363-371. 被引量:1
  • 6Gilbarg D., Trudinger N. S., Elliptic Partial Equations of Second Order, Berlin: Springer-Verlag, 1977. 被引量:1
  • 7Yan J. R., Kou C. H., Oscillation of solutions of impulsive delay differential equations, J. Math. Anal. Appl., 2001, 254(2): 358-370. 被引量:1

同被引文献124

引证文献20

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部