摘要
研究一类脉冲向量中立型抛物偏微分方程的振动性,借助Domslak引进的H-振动的概念及内积降维的方法,将多维振动问题化为一维脉冲中立型微分不等式不存在最终正解的问题,建立了该类方程在Dirichlet边值条件下所有解H-振动的若干充分判据,这里H是R^M中的单位向量.
The oscillation of a class of impulsive vector neutral parabolic partial differential equations is studied. To change the multi-dimensional oscillation problems into the problems of which one-dimensional impulsive delay differential inequalities havenlt eventually positive solution by employing the concept of H-oscillation introduced by Domslak and the method of reducing dimension with the inner product, some sufficient criteria for H-oscillation of all solutions of the equations are established under Diriehlet boundary value condition, where H is a unit vector of R^M.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2010年第2期257-262,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学天元基金资助项目(10626033)
湖南省教育厅科研计划项目(07C164)
关键词
H-振动性
向量
抛物偏微分方程
H-oscillation
vector
parabolic partial differential equation