摘要
研究含有时滞的双营养单种群Chemostat模型周期解的全局吸引性,首先利用强正、凹算子理论给出了系统存在唯一正周期解的充分条件,然后利用泛函微分方程的单调理论得到了正周期解的全局吸引性。
The global attractivity of periodic solution of a two-nutrient chemostat model is considered. The model incorporates time delays due to lapse between the uptake of nutrient by cells and the incorporation of the biomass. By developing the theory of the concave operators to functional differential equations, the sufficient conditions for the unique periodic solution are established, then the global attractivity of this periodic solution is proved by using the monotone theory of functional differential equations.
出处
《生物数学学报》
CSCD
2000年第4期388-398,共11页
Journal of Biomathematics
基金
国家自然科学基金!(19771067)