期刊文献+

基于改进的K近邻和支持向量机客户流失预测 被引量:7

Telecom customer churn prediction based on improved K-nearest neighbor and support vector machine
下载PDF
导出
摘要 将K近邻分类法和支持向量机分类法结合起来,给出一种电信客户流失预测方法,即对边界样本采用加权K近邻分类,而对非边界样本采用改进的支持向量机分类。在公开不平衡数据集和电信数据集上的实验可验证所给方法有效,且能提高少数类的检测精度和总体评价指标。 Combining K-nearest neighbor classification and support vector machine classification,a telecom customer churn prediction method is presented.According to this method,the boundary samples are classified by the weighted K-nearest neighbor,and the non boundary samples are classified by the improved support vector machine respectively.Experiments on open unbalanced data sets and telecommunication data sets show that,the proposed method is effective and can improve the overall evaluation index,especially improve the detection accuracy of the minority.
作者 卢光跃 王航龙 李创创 赵宇翔 李四维 LU Guangyue, WANG Hanglong, LI Chuangchuang,ZHAO Yuxiang, LI Siwei(Shaanxi Key Laboratory of Information Communication Network and Security,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《西安邮电大学学报》 2018年第2期1-6,共6页 Journal of Xi’an University of Posts and Telecommunications
基金 陕西省工业科技攻关项目(2015GY-013 2016GY-113)
关键词 客户流失 支持向量机 K近邻 不均衡数据集 customer churn support vector machine K nearest neighbor unbalanced data set
  • 相关文献

参考文献13

二级参考文献202

共引文献375

同被引文献43

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部