期刊文献+

改进随机森林算法在电信业客户流失预测中的应用 被引量:32

The Application of Improved Random Forest in the Telecom Customer Churn Prediction
下载PDF
导出
摘要 为有效处理不平衡分类,提高电信业客户流失预测中高价值客户流失预测的准确率,提出改进的随机森林算法(IRFA).该算法改进随机森林中生成每棵树时节点划分的方法,基于客户生命价值划分节点,这是对信息增益的修改,不但解决数据分布不平衡问题,而且提高对有流失倾向的高价值客户预测的准确率.将算法应用于某电信公司的客户流失预测,实验表明,与其他方法相比,IRFA具有更好的分类性能,而且提高高价值客户流失预测的准确率. An improved random forest algorithm (IRFA) is proposed to handle imbalanced classification and improve the prediction accuracy of high-value customers in telecom customer churn prediction. The node partition method for generating each tree is improved. Nodes are divided based on the life value of customers. Thus the problem of imbalanced data distribution is solved, and the accuracy of chum prediction of high-value customers is raised. IRFA is applied to customer churn prediction for a telecom company. Experimental results show that compared with other methods, the proposed algorithm has a better performance in classification and it improves the accuracy of churn prediction of high-value customers.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第11期1041-1049,共9页 Pattern Recognition and Artificial Intelligence
基金 中央高校基本科研基金项目(No.WK2100100021)资助
关键词 流失预测 随机森林 不平衡数据 Churn Prediction, Random Forest, Imbalanced Data
  • 相关文献

参考文献18

  • 1Hadden J, Tiwari A, Roy R, et al. Computer Assisted Customer Chum Management: State-of-the-Art and Future Trends. Computers & Operations Research, 2007, 34 (10) : 2902 -2917. 被引量:1
  • 2Coussement K, Van den Poel D. Chum Prediction in Subscription Services : An Application of Support Vector Machines While Compa- ring Two Parameter-Selection Techniques. Expert Systems with Applications, 2008, 34( 1 ) : 313-327. 被引量:1
  • 3Idris A, Rizwan M, Khan A. Chum Prediction in Telecom Using Random Forest and PSO Based Data Balancing in Combination with Various Feature Selection Strategies. Computers & Electrical Engi- neering, 2012, 38(6): 1808-1819. 被引量:1
  • 4Burez J, Van den Poel D. Handling Class Imbalance in Customer Chum Prediction. Expert Systems with Applications, 2009, 36 ( 3 ) : 4626-4636. 被引量:1
  • 5Dasgupta K, Singh R, Viswanathan B, et al. Social Ties and Their Relevance to Chum in Mobile Telecom Networks//Proc of the 11 th International Conference on Extending Database Technology: Ad- vances in Database Technology. Nantes, France, 2008 : 668-677. 被引量:1
  • 6Richter Y, Yom-Tov E, Slonim N. Predicting Customer Chum in Mobile Networks through Analysis of Social Groups// Proc of the SIAM International Conference on Data Mining. Columbus, USA, 2010 : 732-741. 被引量:1
  • 7Saravanan M, Vijay Raajaa G S. A Graph-Based Chum Prediction Model for Mobile Telecom Networks//Proc of the 8th International Conference on Advanced Data Mining and Applications. Nanjing,China, 2012 : 367-382. 被引量:1
  • 8Luo B, Shao P J, Liu J. Customer Chum Prediction Based on the Decision Tree in Personal Handyphone System Service//Proc of the International Conference on Service Systems and Service Manage- ment. Chengdu, China, 2007. DOI: 10.1109/ICSSSM. 2007. A280145. 被引量:1
  • 9Tsai C F, Lu Y H. Customer Churn Prediction by Hybrid Neural Networks. Expert Systems with Applications, 2009, 36 (10): 12547-12553. 被引量:1
  • 10Liaw A, Wiener M. Classification and Regression by RandomFor- est. R News, 2002, 2(3) : 18-22. 被引量:1

同被引文献243

引证文献32

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部