摘要
应用基于风险最小化原理的支持向量机,研究了电信客户欠费分类问题,并与K-均值聚类法、三层人工神经网络进行对比研究,发现支持向量机分类正确率平均为95.48%,K-均值聚类法为83.87%,三层BP人工神经网络为89.80%.结果表明支持向量机能够更好的反映电信客户欠费分类,是一种研究电信客户欠费分类问题的有效方法。
出处
《科技管理研究》
CSSCI
北大核心
2006年第2期76-78,共3页
Science and Technology Management Research
基金
国家自然科学基金资助项目(70450001)