期刊文献+

基于聚类分析和XGBoost算法的换机预测模型 被引量:7

Prediction of mobile users for updating terminal based on cluster analysis and XGBoost algorithm
下载PDF
导出
摘要 为了有效地向手机用户提供换机服务,建立一种换机预测模型。利用孤立森林算法,排查与换机预测无关的异常电信用户。将排查后的数据集通过K-Medoids聚类分析精细划分为3个用户簇,利用SMOTE和Tomek组合采样的方法,处理每个用户簇的不平衡问题。最后将各个用户簇的数据通过XGBoost算法进行训练,并根据格式搜索法得出最优换机预测模型。实验结果表明,该换机预测模型的预测准确率高于其他预测模型,可较好地为电信用户提供换机服务。 A prediction model is proposed to effectively provide service to telecom users for changing mobile phones. In this model, the isolation forest algorithm is used to eliminate outliers in the user s datasets by comparing abnormal value from the algorithm with the threshold, and the K-mediods clustering method is used to get fine division of user clusters. The combination of synthetic minority oversampling technique (SMOTE) and Tomek sampling method is then used to deal with the unbalance problem in each user s cluster, and finally XGBoost algorithm is used in each user cluster datasets to train model for prediction and obtain the optimal model by grid search. Experimental results show that this prediction model has better prediction performance than other models and can provide better switch service for telecom users.
作者 卢光跃 吴洋 吕少卿 闫真光 LU Guangyue;WU Yang;LYU Shaoqing;YAN Zhenguang(Shaanxi Key Laboratory of Information Communication Network and Security,Xi'an University of Posts and Telecommunications, Xi'an 710121,China)
出处 《西安邮电大学学报》 2019年第2期94-97,104,共5页 Journal of Xi’an University of Posts and Telecommunications
基金 陕西省工业科技攻关计划资助项目(2015GY-013,2016GY-113) 陕西省教育厅科研计划资助项目(17JK0703)
关键词 换机预测 孤立森林 K-mediods聚类 组合采样 XGBoost prediction model isolation forests K-mediods clustering SMOTE and Tomek XGBoost
  • 相关文献

参考文献4

二级参考文献58

  • 1叶进,程泽凯,林士敏.基于贝叶斯网络的电信客户流失预测分析[J].计算机工程与应用,2005,41(14):212-214. 被引量:13
  • 2夏国恩,陈云,金炜东.基于支持向量机的电信客户欠费评估[J].科技管理研究,2006,26(2):76-78. 被引量:5
  • 3赵凤英,王崇骏,陈世福.用于不均衡数据集的挖掘方法[J].计算机科学,2007,34(9):139-141. 被引量:5
  • 4薛薇,陈欢歌编著.基于Clementine的数据挖掘[M].北京:中国人民大学出版社,2012. 被引量:22
  • 5Dyche J. The CRM handbook: a business guide to customer rela- tionship management [ M ]. Addison-Wesley Professional ,2002. 被引量:1
  • 6Greco S ,Matarazzo B ,Slowinski R. Rough sets theory for multicri- teria decision analysis [ J ]. European Journal of Operational Re- search,2001,129( 1 ) :1-47. 被引量:1
  • 7Greco S, Matarazzo B, Slowihski R. Dominance-based rough set ap- proach as a proper way of handling graduality in rough set theory [ M ]. Transactions on Rough Sets VII. Springer Berlin Heidelberg, 2007:36-52. 被引量:1
  • 8Fan T F,Liau C J,Liu D R. Dominance-based rough set analysis for uncertain data tables [ C ]. IFSA/EUSFLAT Conf,2009:294-299. 被引量:1
  • 9Deng Wei-bin, Wang Guo-yin, Hu Fang, et al. A novel method for elimination of inconsistencies in ordinal classification with monoto- nicity constraints [ J ]. Fundamenta Informaticae, 2013,126 ( 4 ) : 377-395. 被引量:1
  • 10Greco S, Matarazzo B, Slowinski R, et al. Variable consistency model of dominance-based rough sets approach [ C ]. Rough Sets and Current Trends in Computing, Springer Berlin Heidelberg, 2001 : 170-181. 被引量:1

共引文献22

同被引文献77

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部