期刊文献+

基于互信息的多通道联合稀疏模型及其组织病理图像分类 被引量:4

Mutual Information-based Multi-channel Joint Sparse Model for Histopathological Images Classification
下载PDF
导出
摘要 针对传统联合稀疏模型中共有分量与独有分量都采用相同的字典进行特征表示,导致编码系数判别性低的问题,提出一种基于互信息的多通道联合稀疏模型,并将其应用于组织病理图像的分类.该模型通过K均值对样本特征进行聚类,分别得到R,G与B通道的字典;其次利用样本特征与3个字典之间的互信息,剔除弱相关原子且构造了1个共有字典与3个独有字典,以此为基础建立了多通道联合稀疏模型;同时引入图像的空间信息,结合空间金字塔匹配模型对不同层次的图像特征进行联合稀疏编码,利用编码系数训练SVM分类器.实验结果表明,该模型具有更好的特征表示能力,大大提高了编码系数的判别性,获得了较好的分类性能与较强的鲁棒性. In the traditional joint sparse model, a dictionary was used for feature representation of the commonor unique components. This leads to the low discrimination of the sparse coding coefficients. In thispaper, mutual information-based multi-channel joint sparse model is proposed for histopathological imageclassification. The training samples are clustered into R, G and B channel dictionaries by using K-means. Byexploring the mutual information between training samples and three dictionaries, the irrelevant atoms aredeleted, meanwhile, a shared dictionary and three unique dictionaries constructed. Simultaneously,multi-channel joint sparse model is designed based on the shared dictionary and three unique dictionaries.Furthermore, in order to represent image feature of different levels, the spatial pyramid matching is used tothe multi-channel joint sparse coding. Finally, the joint sparse coding coefficients are used to train the SVMfor histopathological images classification. The experimental results show that the proposed model haspower feature representation ability and improve greatly the discrimination of coding coefficients. Thus thebetter classification performance and the power robustness can be obtained with compared to the traditionalmodels.
作者 汤红忠 李骁 张小刚 张东波 Tang Hongzhong;Li Xiao;Zhang Xiaogang;Zhang Dongbo(College of Information Engineering,Xiangtan University,Xiangtan 411105;College of Electrical and Information Engineering,Hunan University,Changsha 410082;Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education,Xiangtan University,Xiangtan 411105)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第8期1514-1521,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61573299 61673162 61602397) 湖南省自然科学基金(2017JJ3315 2017JJ2251 2016JJ3125)
关键词 互信息 多通道联合稀疏模型 空间金字塔匹配 组织病理图像分类 mutual information multi-channel joint sparse coding model spatial pyramid matching histopathologicalimage classification
  • 相关文献

参考文献3

二级参考文献41

  • 1Jain A K, Duin R P W, Mao J C. Statistical pattern recog- nition: a review. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(1): 4-37. 被引量:1
  • 2Kohavi R, John G H. Wrappers for feature subset selection. Artilbcied Intelligence, 1997, 97(1-2): 273-324. 被引量:1
  • 3Yamamoto H, Yamaji H, Fukusaki E, Ohno H, Fukuda H. Canonical correlation analysis for multivariate regression and its application to metabolic fingerprinting. Biochemi- cal Engineering Journal, 2008, 40(2): 199-204. 被引量:1
  • 4Barrett A B, Barnett L, Seth A K. Multivariate granger causality and generalized variance. Physical Review E, 2010, 81(4): 041907. 被引量:1
  • 5Sallehuddin R, Shamsuddin S M H, Hashim S Z M. Applica- tion of grey relational analysis for multivariate time series.In: Proceedings of the 8th International Conference on Intel- ligent Systems Design and Applications. Piscataway, USA: IEEE, 2008. 432-437. 被引量:1
  • 6Shannon C E. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communica- tions Review, 2001, 5(1): 3-55. 被引量:1
  • 7Han M, Liang Z P, Li D C. Sparse kernel density estimations and its application in variable selection based on quadratic Renyi entropy. Neurocomputing, 2011, 74(10): 1664-1672. 被引量:1
  • 8Brown G. A new perspective for information theoretic fea- ture selection. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Florida, USA: JMLR, 2009. 49-56. 被引量:1
  • 9Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neu- ral Networks, 1994, 5(4): 537-550. 被引量:1
  • 10Yang H H, Moody J. Data visualization and feature selec- tion: new algorithms for nongaussian data. Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000. 687-693. 被引量:1

共引文献33

同被引文献32

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部