期刊文献+

基于互信息的分步式输入变量选择多元序列预测研究 被引量:21

Stepwise Input Variable Selection Based on Mutual Information for Multivariate Forecasting
下载PDF
导出
摘要 针对多元序列分析中存在的输入变量选择问题,提出一种基于k-近邻互信息估计的分步式变量选择算法.该算法通过两步过程分别实现相关变量的选择与弱相关变量的剔除.同时将分步变量选择算法应用于径向基函数(Radial basis function,RBF)神经网络结构的优化中.在K均值聚类的基础上,通过分析隐含层神经元的输出权值与神经网络输出的相关性,对隐含层节点进行选择,改进网络的结构与性能.Friedman数据的仿真实验验证了分步变量选择算法的有效性;Gas furnace多元时间序列以及Boston housing数据的仿真结果表明,优化后的RBF网络能够在保证模型精度的基础上有效控制网络规模. Input variable selection has many applications in the problem of multivariate time series.In this paper,a novel stepwise variable selection algorithm is proposed based on the k-nearest mutual information estimation.Two steps are used to select the relevant variables and discard weak relevant variables.Meanwhile,the proposed variable selection algorithm is applied to the optimal structure design for radial basis function(RBF) neural networks.The hidden neurons are selected based on K-means clustering and the correlation between the hidden neuron weight and the output,to the purpose that the architecture and the performance of the networks can be improved.Simulation results of Friedman data show the validity of the proposed input variable selection algorithm.Simulation results of Gas furnace and Boston housing substantiate that the size of the improved RBF networks can be controlled on the basis of the model accuracy assured.
作者 韩敏 刘晓欣
出处 《自动化学报》 EI CSCD 北大核心 2012年第6期999-1006,共8页 Acta Automatica Sinica
基金 国家自然科学基金(61074096)资助~~
关键词 互信息 变量选择 径向基函数网络 节点选择 Mutual information varaible selection radial basis function(RBF) networks neuron selection
  • 相关文献

参考文献17

  • 1Jain A K, Duin R P W, Mao J C. Statistical pattern recog- nition: a review. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(1): 4-37. 被引量:1
  • 2Kohavi R, John G H. Wrappers for feature subset selection. Artilbcied Intelligence, 1997, 97(1-2): 273-324. 被引量:1
  • 3郭武,戴礼荣,王仁华.采用主成分分析的特征映射[J].自动化学报,2008,34(8):876-879. 被引量:8
  • 4段青,赵建国,马艳.基于优化的KPCA暂态稳定评估模型的特征提取[J].控制与决策,2010,25(9):1403-1407. 被引量:6
  • 5杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 6Yamamoto H, Yamaji H, Fukusaki E, Ohno H, Fukuda H. Canonical correlation analysis for multivariate regression and its application to metabolic fingerprinting. Biochemi- cal Engineering Journal, 2008, 40(2): 199-204. 被引量:1
  • 7Barrett A B, Barnett L, Seth A K. Multivariate granger causality and generalized variance. Physical Review E, 2010, 81(4): 041907. 被引量:1
  • 8Sallehuddin R, Shamsuddin S M H, Hashim S Z M. Applica- tion of grey relational analysis for multivariate time series.In: Proceedings of the 8th International Conference on Intel- ligent Systems Design and Applications. Piscataway, USA: IEEE, 2008. 432-437. 被引量:1
  • 9Shannon C E. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communica- tions Review, 2001, 5(1): 3-55. 被引量:1
  • 10Han M, Liang Z P, Li D C. Sparse kernel density estimations and its application in variable selection based on quadratic Renyi entropy. Neurocomputing, 2011, 74(10): 1664-1672. 被引量:1

二级参考文献32

共引文献159

同被引文献223

引证文献21

二级引证文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部