期刊文献+

基于卫星云图历史资料反演云团非线性预测模型 被引量:2

Non-linear Forecast Model of Cloud Clusters Movement Based on Parameters Retrieval of Historical Satellite Cloud Pictures Time Series
下载PDF
导出
摘要 针对线性预测方法难以有效描述云团的非线性、非平稳变化的困难,基于经验正交函数分解(EOF)和遗传算法参数优化结合的思想,提出了一条云团非线性预测模型反演的方法途径。首先将卫星云图序列作EOF的时、空分解;在此基础上,引入遗传算法对EOF的时间系数序列进行了动力模型重构和模型参数反演,建立了EOF时间系数的非线性微分方程组;再通过时、空函数合成,构造了云团演变的动力预报模型。试验结果表明,反演的云团预报模型能较为合理地描述特定季节区域内云团演变的基本趋势,预测结果与实际云图的主要特征基本相符,尤其是实现了云图3h以上的中、长时效的客观预测。 Due to the fact that linear prediction method is difficult to describe the nonlinear, non-stationary changes of cloud clusters, a technique of retrieval nonlinear clouds clusters forecast model, based on the idea of combining the decomposition of empirical orthogonal function (EOF) and the genetic algorithm optimization parameters, was presented. Firstly, satellite image sequences were temporal-spatially decomposed by EOF. On this basis, genetic algorithms were introduced to make the dynamic model reconstruction and model parameters optimization retrieval of EOF time coefficients sequence, and a nonlinear differential equations of EOF time coefficients were established. Then, by the EOF temporal-spatial functions synthesis, a dynamic forecast model of cloud clusters evolution was structured. The experimental results showed that the retrieved clouds dynamic forecast model was more reasonable in describing the cloud evolution of the underlying trend in particular seasons and region, and the forecast results were better accorded with the basic characteristics of actual satellite cloud pictures. Especially, a middle-long period over three hours objective cloud clusters predictions was achieved.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2007年第5期41-47,共7页 Journal of National University of Defense Technology
基金 国家部委资助项目
关键词 卫星云图 云团预测 正交分解 遗传算法 参数优化 satellite cloud pictures cloud clusters forecast empirical orthogonal function genetic algorithms parameter optimization
  • 相关文献

参考文献10

  • 1[1]Hall D J,Endlish R M,Wolf E.Experiments in Automatic Cloud Tracking Using SMSGOES Data[J].Appl.Meteor.,1997,16(5):1219 -1230. 被引量:1
  • 2[2]Arking A,Robert C L,Rosenfield A.A Furrier Approach to Cloud Motion Estimation[J].Appl.Meteor.,1978,17(3):735-744. 被引量:1
  • 3龚克,叶大鲁,葛成辉.卫星云图预测的运动矢量方法[J].中国图象图形学报(A辑),2000,5(4):349-352. 被引量:10
  • 4白洁,王洪庆,陶祖钰.GMS卫星红外云图强对流云团的识别与追踪[J].热带气象学报,1997,13(2):158-167. 被引量:58
  • 5张韧,刘科峰.卫星云图云团移动判别与临近预测[J].应用基础与工程科学学报,2004,12(增刊):141-145. 被引量:1
  • 6[6]Takens F.Detecting Strange Attractors in Fluid Turbulence[J].Lecture Notes in Mathematics,1981,898(2):361-381. 被引量:1
  • 7吴洪宝,吴蕾编著..气候变率诊断和预测方法[M].北京:气象出版社,2005:371.
  • 8王小平 曹立明.遗传算法理论应用与软件实现[M].西安:西安交通大学出版社,2003.. 被引量:5
  • 9[9]Vukicevic T,Greenwald T,Zupanski M,et al.Mesoscale Cloud State Estimation from Visible and Infrared Satellite Radiances[J].Monthly Weather Review,2004,132(12):3066-3077. 被引量:1
  • 10[10]Velden C S.Recent Innovations in Deriving Tropospheric Winds From Meteorological Satellites[J].Review of American Meteorological Society,2005,36(2):205-223. 被引量:1

二级参考文献13

共引文献65

同被引文献47

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部