期刊文献+

用模糊神经网络自动识别云的技术研究 被引量:16

An Automatical Pattern Recognition Techniques of Cloud Based on Fuzzy Neural Network
下载PDF
导出
摘要 采用模糊逻辑理论与神经网络技术方法,构建一种新的分类识别方法———模糊神经网络(FNN),运用10.5~12.5μm通道的红外卫星云图资料,对(70°N^70°S,70°E^150°W)范围不同的云类进行定量自动模式识别高云、中云、低云区和无云区以及相关的云量,并结合数字图像处理的相关知识和技术,将分类结果用直观的图像输出。 A new technical method of Fuzzy Neural Network (FNN) based on fuzzy logic and neural network is designed, which is used to construct a classified recognition of automatic pattern in cloud cover and height, using HIRS (High Resolution Infrared Radiation Sounder) data from 10. 5 - 12. 5/ma in the area (70°N- 70°S, 70°E- 150°W). It automatically recognizes the interrelated cloud cover and sort in high-level cloud, mid-level cloud, low-level cloud and no cloud areas. The distribution characteristics of membership function and the influence of geographical distribution on cloud are discussed, and it is pointed out that: the height of clouds is influenced by the geographical distribution, at the same time there are different influence degrees of underlying surface such as the plateau, ocean, land, forest, desert, etc. which cause incompletely same standard height of the same kind of cloud in different geographical regions. On the other hand, it should be a fuzzy areas in the compartition of height between cloud layers, but it is almost divided with the measure of threshold in the past research [it includes ISCCP (International Satellite Cloud Climate Project)] and will bring the error margin on the method, and thus influences the application of quantificational identifying classes of cloud in the weather forecast. Therefore, according to the weather tradition, it is divided into four kinds of cloud, i. e. , the clear sky or no cloud, low-level cloud, mid-level cloud and high-level cloud, and directly using HIRS data and making sure respectively each parameter of membership function [-a;, bi, ci], i = 1,2, 3,……, No, the distributive curve of membership function is obtained. But the classification of cloud height is still influenced by the geographical distribution and the change of latitude. In order to correct the influence, it is assumed that: (1) The distribution of membership function is influenced by the change of geography from south to north (here the change in longitude is neg
出处 《大气科学》 CSCD 北大核心 2005年第5期837-844,共8页 Chinese Journal of Atmospheric Sciences
关键词 模糊神经网络 隶属度函数 卫星云图 fuzzy neural network, satellite images, membership function
  • 相关文献

参考文献9

二级参考文献22

  • 1钟强 汤懋苍 等.高原地区云的气候学特征.青藏高原研究丛书:青藏高原近代气候变化及对环境的影响[M].广州:广东科技出版社,1998.61-64. 被引量:1
  • 2戴加洗,青藏高原气候,1990年 被引量:1
  • 3团体著者,中国地面气象记录月报,1984年,1期 被引量:1
  • 4团体著者,中国地面气象记录月报,1983年,7期 被引量:1
  • 5戴加洗,青藏高原气候,1990年,215页 被引量:1
  • 6张家诚,中国气候,1985年,270页 被引量:1
  • 7白慧卿,硕士学位论文,1995年 被引量:1
  • 8张立明,人工神经网络的模型及其应用,1993年,13页 被引量:1
  • 9徐雷,电子学报,1992年,20卷,106页 被引量:1
  • 10杨行峻,人工神经网络,1992年,26页 被引量:1

共引文献201

同被引文献317

引证文献16

二级引证文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部