期刊文献+

三维网格引导的癌变病人CT图像的腹腔分割 被引量:3

Mesh-Based Segmentation of Abdominal Cavity for Patient with Cancer in CT Images
下载PDF
导出
摘要 针对癌变CT图像中各器官变形严重,传统分割算法无法有效、完整地分割整个腹腔的问题,提出基于三维网格的分割算法.首先借助肋骨和脊椎等骨架获得初始腹腔骨架;然后构造一个球形初始三角网格,并建立与腹腔骨架间的关联;再通过3个目标函数变形网格;最后在网格附近的边界点优化网格,获得腹腔分割结果.实验结果表明,该算法能够有效地对病变严重的CT图像进行腹腔分割,对噪声和器官变形有良好的鲁棒性. The organs with cancers in CT image deform seriously and the traditional segmentation methods cannot segment the entire chest correctly. This paper presents a 3D mesh based segmentation method. Firstly, an initial chest skeleton is found using ribs and back bones; secondly a sphere triangle mesh is constructed and the correspondence between the mesh and the chest skeleton is created; thirdly the mesh is deformed according to three objective functions; finally the mesh is refined by edge voxels near the mesh and the segmentation result is refined. Experimental results show that the proposed method can efficiently segment the seriously-deformed chest in CT image, which is robust against the noise and deformation of organs.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第6期1017-1023,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金面上项目(61272304) 浙江省中青年学科带头人学术攀登项目(pd2013435)
关键词 胸部CT图像 三维图像分割 网格变形 仿射变换 图像边界 chest CT image 3D image segmentation mesh deformation affine transformation image edge
  • 相关文献

参考文献13

  • 1DuncanJ C, Ayache N. Medical image analysis: progress over two decades and the challenges ahead[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 85-106. 被引量:1
  • 2Sahoo P K, Soltani S, Wong A K C, et al. A survey of thresh?olding techniques[J]. Computer Vision, Graphics and Image Processing, 1988,41(2): 233-260. 被引量:1
  • 3ManginJ F, Frouin V, Bloch I, et al. From 3D magnetic reso?nance images to structural representations of the cortex topog?raphy using topology preserving deformations[J].Journal of Mathematical Imaging and Vision-Special Issue on Mathe- matical Imaging, 1995,5(4): 297-318. 被引量:1
  • 4Held K, Kops E R, Krause BJ, et al. Markov random field segmentation of brain MR images[J]. IEEE Transactions on Medical Imaging, 1997, 16(6): 878-886. 被引量:1
  • 5Nalwa V S, Binford T O. On detecting edges[J]. IEEE Transac?tions on Pattern Analysis and Machine Intelligence, 1986,8(6): 699-714. 被引量:1
  • 6Goshtasby A. Design and recovery of 2-D and 3-D shapes us?ing rational Gaussian curves and surfaces[J]. InternationalJournal of Computer Vision, 1993, 10(3): 233-256. 被引量:1
  • 7Mortensen E N, Barrett W A. Intelligent scissors for image composition[C]// Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACMPress, 1995: 191-198. 被引量:1
  • 8McInerney T, Terzopoulos D. Deformable models in medical image analysis[ClII Proceedings of the Workshop on Mathe?matical Methods in Biomedical Image Analysis. Los Alamitos: IEEE Computer Society Press, 1996: 171-180. 被引量:1
  • 9潘晓花,孙文杰,韦志辉,王平安,孙权森,夏德深.脑MR图像互信息最大的凸优化分割模型[J].计算机辅助设计与图形学学报,2012,24(8):1082-1089. 被引量:5
  • 10Lu D F, Ye X Z, Zhou G M. Animating by example[J]. Com?puter Animation and Virtual Worlds, 2007, 18(4/5): 247-257. 被引量:1

二级参考文献21

  • 1Wells W M III, Grimson W E L, Kikinis R, et al. Adaptive segmentation of MRI data [J]. IEEE Transactions on Medical Imaging, 1996, 15(4): 429-442. 被引量:1
  • 2Leemput K V, Maes F, Vandermeulen D, et al. Automated model-based bias field correction of MR images of the brain [J]. IEEE Transactions on Medical Imaging, 1999, 18(10) : 885-896. 被引量:1
  • 3Pham D L, Prince J L. Adaptive fuzzy segmentation of magnetic resonance images [J]. IEEE Transactions on Medical Imaging, 1999, 18(9): 737-752. 被引量:1
  • 4Li C, Gatenby C, Wang L, etal. A robust parametric method for bias field estimation and segmentation of MR images [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2009:218-223. 被引量:1
  • 5Guillemaud R, Brady M. Estimating the bias field of MR images [J]. IEEE Transactions on Medical Imaging, 1997, 16 (3) : 238-251. 被引量:1
  • 6Li C, Kao C Y, Gore J C, et al. Implicit active contours driven by local binary fitting energy[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2007, 1-7. 被引量:1
  • 7Li C, Xu C, Anderson A W, et al. MRI tissue classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework [C]// Proceedings of International Conference on Information Processing in Medical Imaging. Heidelberg: Springer, 2009: 288-299. 被引量:1
  • 8Maes F, Collignon A, Vandermeulen D, et al. Multimodality image registration by maximization of mutual information[J]. IEEE Transactions on Medical Imaging, 1997, 16(2): 187- 198. 被引量:1
  • 9Kim J, Fisher J WIII, Yezzi A J, et al. Nonparametric methods for image segmentation using information theory and curve evolution [C] //Proceedings of IEEE International Conference on Image Processing. Los Alamitos: IEEE Computer Society Press, 2002:797-800. 被引量:1
  • 10Kim J, Fisher J W Ⅲ, Cetin M, et al. Incorporating complex statistical information in active contour -based image segmentation [C] //Proceedings of IEEE International Conference on Image Processing. Los Alamitos, IEEE Computer Society Press, 2003:655-658. 被引量:1

共引文献4

同被引文献7

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部