期刊文献+

改进PID在反应釜温度控制系统中的应用研究 被引量:13

Application of Improved PID in Reactor Temperature Control System
下载PDF
导出
摘要 反应釜炉温控制是化工生产过程中主要的控制系统之一,其温度控制具有大滞后、时变、非线性等特点。针对常规PID控制效果不佳的缺点,提出一种改进的模糊RBF神经网络智能控制方法。将系统的输入误差及误差变化率进行模糊化,并利用RBF神经网络算法对PID控制参数进行在线学习、运算和整定。在RBF神经网络控制算法中,设定初始权值在一定范围内服从高斯分布和均匀分布,对权值不断优化,使得反应釜温度达到良好的控制效果。经Matlab仿真验证,结果表明和常规PID相比,该方法提高了系统的控制精度并具有较强的鲁棒性。 The reactor temperature control is one of the main control systems in the chemical production process. Its temperature control has the characteristics of large hysteresis, time variation and nonlinearity. To overcome the shortcomings of the conventional PID control, an improved fuzzy RBF neural network intelligent control method was proposed. The input error and error rate change of the system were fuzzified, and the RBF neural network algorithm was used to on-line learn, calculate and adjust the PID control parameters. In the RBF neural network control algorithm, the initial weight was set in a certain range by Gauss distribution and uniform distribution, and the weight was optimized continuously, so that the temperature of the reactored reached a good control effect. The Matlab simulation results show that the proposed method improves the control precision of the system and has strong robustness.
作者 高晴 张莉 薛旭璐 韩仪洒 谭海燕 GAO Qing;ZHANG Li;XUE Xu-lu;HAN Yi-sa;TAN Hai-yan(School of Electronics and Information, Xi'an Polytechnic University, Xi'an 710048, China)
出处 《测控技术》 CSCD 2018年第7期136-139,共4页 Measurement & Control Technology
基金 西安市科技局产学研协调创新计划(CXY1517(4))
关键词 模糊 RBF神经网络 PID控制 反应釜 温度 fuzzy RBF neural network PID control reactor temperature
  • 相关文献

参考文献13

二级参考文献60

共引文献113

同被引文献90

引证文献13

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部