期刊文献+

混沌人工蜂群算法 被引量:1

Chaos artificial bee colony algorithm
下载PDF
导出
摘要 针对人工蜂群算法搜索精度较低、容易陷入局部最优的缺陷,将混沌搜索机制融入了人工蜂群算法,利用混沌机制重置个体,以保持个体的多样性;同时加入全局最优个体信息和惯性调整因子对个体位置进行更新,提出了混沌人工蜂群算法,并将该算法应用于水电站经济调度问题.实验结果显示,混沌人工蜂群算法搜索精度高、速度快,鲁棒性强,是一种较实用的优化算法. In view of the fact that the search speed and accuracy of the basic artificial bee colony is not high and the optimization for high-dimensional problems is poor,the chaos search mechanism is integrated into the artificial bee colony algorithm to reset individuals and maintain individual diversity. At the same time,we add global optimal individual information and inertia adjustment factors to update individual locations. The chaos artificial bee colony algorithm is proposed and applied to the economic scheduling of hydropower station. Experiments show that chaos artificial bee colony algorithm has high searching precision,fast speed and strong robustness,which is a practical optimization algorithm.
作者 李辉 LI Hui(Mathematics Office of Fujian College of Water Conservancy and Electric Power,Yong'an 366000,Chin)
出处 《广州大学学报(自然科学版)》 CAS 2018年第2期8-12,共5页 Journal of Guangzhou University:Natural Science Edition
基金 福建省教育厅资助项目(JAT160773)
关键词 混沌搜索 人工蜂群算法 随机搜索 Chaos search artificial bee colony algorithm random search
  • 相关文献

参考文献12

二级参考文献51

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:356
  • 2刘习春,喻寿益.局部快速微调遗传算法[J].计算机学报,2006,29(1):100-105. 被引量:37
  • 3刘献如,杨欣荣,伍春洪,王仕果.基于模拟退火算法的立体匹配搜索方法[J].计算机应用,2006,26(3):607-609. 被引量:5
  • 4Dofigo M, Di Caro G. The Ant Colony Optimization Meta-Heuristie: New ideas in Optimization[ M]. New York: McGraw-Hill, 1999. 被引量:1
  • 5Talbi E D. Parallel Ant Colonies for the quadratic assignment problem[J]. Future Generation Computer Systems, 2001, (17):441- 449. 被引量:1
  • 6陈洋波,陈安勇.水库优化调度[M].武汉:湖北科学技术出版社,1995. 被引量:2
  • 7LING S H Leung.Tuning of the structure and parameters of neural network using an improved genetic algorithm[J].Industrial Electronics Society,2001,33 (1):25-30. 被引量:1
  • 8LEUNG F H F Lam,LING H K,TAM S H.Tuning of the structure and parameters of a neural network using an improved genetic algorithm[J].IEEE Transactions on Neural Networks,2003,14(1):79-88. 被引量:1
  • 9ABDELHADI B Benoudjit.Application of genetic algorithm with a novel adaptive scheme for the identification of induction machine parameters[J].IEEE Transactions on Energy Conversion,2005,20(3):284 -291. 被引量:1
  • 10HAUPT R L.Adaptive crossed dipole antennas using a genetic algorithm[J].IEEE Transactions on Antennas and Propagation,2004,52(8):1976-1982. 被引量:1

共引文献48

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部