期刊文献+

基于病毒进化粒子群算法的梯级电站厂间负荷优化分配 被引量:7

Optimized load allocation of cascaded hydropower stations based on virus particle swarm optimization algorithm
原文传递
导出
摘要 病毒进化粒子群算法(VPSO)是将病毒进化机制引入粒子群算法(PSO)中,利用所生成的主群体和病毒群体指导种群进化。寻优过程中,主群体在上下代粒子群之间纵向传递信息,指导粒子群的全局搜索;病毒群体通过转录与反转录在同代个体之间横向传递进化信息,指导粒子群的局部搜索。算例结果表明,较PSO算法和免疫粒子群算法(IPSO),VPSO算法提高求解精度的同时也加快了计算速度,能有效解决复杂的梯级电站厂间负荷分配问题。 This paper presents a new method,virus particle swarm optimization(VPSO)that during the evolution generates main groups and virus groups as a combination of particle swarm optimization algorithm(PSO)with virus evolutionary mechanism.The main groups transmit information cross the vertical generations and guide the global search,while the virus groups transfer evolutional information cross the same generation through transcription and reverse transcription and keep a watchful eye on the local search.This method was verified by practical applications to show its effectiveness in improving solution accuracy and convergence speed.Therefore,this paper provides a novel algorithm for load allocation optimization.
出处 《水力发电学报》 EI CSCD 北大核心 2012年第2期38-43,共6页 Journal of Hydroelectric Engineering
基金 国家科技支撑计划项目(2006BAC05B03) 国家自然科学基金资助项目(50609007) 国家自然科学基金资助项目(40971300)
关键词 水电工程 粒子群算法 病毒进化机制 梯级电站 负荷分配 hydropower engineering particle swarm optimization algorithm virus evolutionary cascaded hydropower stations loading distribution
  • 相关文献

参考文献13

二级参考文献35

共引文献144

同被引文献66

引证文献7

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部