期刊文献+

基于免疫粒子群优化算法的梯级水电厂间负荷优化分配 被引量:14

The optimized loading distribution among cascaded hydropower stations based on immune particle swarm optimization algorithm
下载PDF
导出
摘要 免疫粒子群优化算法(IA-PSO)是将免疫系统的免疫信息处理机制引入粒子群算法(PSO)中,利用其特有的浓度选择机制以及疫苗接种原理,改进了粒子群优化算法的全局寻优能力,提高了收敛速度。在分析梯级水电厂间负荷分配的数学模型和IA-PSO算法特点的基础上,提出了基于IA-PSO算法的负荷优化分配方法,建立了数学模型,给出了具体求解步骤。经实例验证,IA-PSO算法得出的负荷分配方案优于PSO算法的计算结果,且算法后期收敛速度快,从而为梯级水电厂间负荷优化分配问题提供了一条新的求解途径,可应用于更广泛的优化问题。 The immune particle swarm optimal algorithm(IA-PSO), which is proposed by invdving the immune information processing mechanism into the original particle swarm optimal algorithm, improves the ability of seeking the global excellent result and covergence speed with its especial consistency selection mechanism and bacterin inoculation. Based on analyzing the model of load distribution among cascaded hydropower stations and the traits of IA-PSO, the corresponding mathematical description and the solution procedure by using IA-PSO is presented in this paper. In the case study, IA-PSO can gain superior load distribution scheme to PSO and own faster constringency speed in the evening evolution. Thus, a new and valid method is provided for solving the problem of optimized loading distribution among cascaded hydropower stations, it can be available for extensive optimization application.
出处 《水力发电学报》 EI CSCD 北大核心 2007年第5期15-20,共6页 Journal of Hydroelectric Engineering
基金 国家自然科学基金项目资助(50579019)
关键词 水电工程 负荷分配 免疫粒子群算法 梯级水电厂 hydropower engineering loading distribution immune particle swarm optimization algorithm cascaded hydropower stations
  • 相关文献

参考文献10

二级参考文献26

  • 1汪新星,张明.基于改进微粒群算法的水火电力系统短期发电计划优化[J].电网技术,2004,28(12):16-19. 被引量:32
  • 2唐剑东,熊信银,吴耀武,蒋秀洁.基于改进PSO算法的电力系统无功优化[J].电力自动化设备,2004,27(7):81-84. 被引量:46
  • 3朱敏,王定一.电力系统中梯级水电站实时优化运行控制新算法[J].电力系统自动化,1997,21(4):30-33. 被引量:21
  • 4[3]Yoshida H, Kawata K, Fukuyama Y et al. A particle swarm optimization for reactive power and voltage control considering voltage security[J]. IEEE Trans on Power Systems, 2000, 15(4):1232-1239. 被引量:1
  • 5[4]Soares S, Lyra C, Tavares H. Optimal generation scheduling of hydro-thermal power system[J]. IEEE Trans on Power Apparatus and Systems, 1980, 99(3): 1107-1115. 被引量:1
  • 6[5]Wu Yonggang, Ho Chunying, Wang Dingyi. A diploid genetic approach to short-term scheduling of hydro-thermal system[J]. IEEE Trans on Power Systems, 2000, 15(4): 1268-1274. 被引量:1
  • 7[1]KENNEDY J,EBERHART R. Particle swarm optimization [A]. IEEE Int'l Conf. on Neural Networks[C]. Perth,Australia:IEEE, 1995. 1942-1948. 被引量:1
  • 8[2]EBERHART R,KENNEDY J. A new optimizer using particle swarm theory [A]. Proc. of the sixth international Symposium on Micro Machine and Human Science[C]. Nagoya, Japan: [ s.n. ], 1995.39- 43. 被引量:1
  • 9[3]SHI Yu-hui,EBERHART R. Parameter selection in particle swarm optimization[A]. Proc. of the 7th Annual Conf. on Evolutionary Programming[C]. Washington DC: [s.n.], 1998. 591-600. 被引量:1
  • 10[5]SHI Y,EBERHART R. A modified particle swarm optimizer[A]. IEEE World Congress on Computational Intelligence[C]. [s.1.]: IEEE, 1998.1951-1957. 被引量:1

共引文献117

同被引文献130

引证文献14

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部