期刊文献+

改进的人工蜂群算法求解多目标约束优化问题的研究

A Study on Improved Artificial Bee Colony Algorithm for Multi-objective Constraints Optimization
下载PDF
导出
摘要 人工蜂群算法具有控制参数少、复杂度低、鲁棒性强的优点,在每次迭代过程中进行全局和局部最优搜索,都具有良好的局部收敛和寻优能力,但它收敛慢,易陷入局部最优。I-ABC算法在人工蜂群算法中引入了邻域变换、轮盘赌选择、侦察蜂计数等方法。经实证分析发现,I-ABC算法在收敛性、非劣解集、多样性指标、世代距离、计算精度、收敛速度、运算效率等方面均优于人工蜂群算法,更适合解决多目标优化问题。 The artificial bee colony(hereinafter referred to as“ABC”)algorithm has the advantages of less control parameters,low complexity and strong robustness.It performs global and local optimal search in each iteration process with good local convergence and optimization ability,but it tends to fall into local optimal because of slow convergence.The I-ABC algorithm introduces such methods as neighborhood transformation,roulette selection,and reconnaissance bee counting into the ABC algorithm.The results from empirical analysis show that the I-ABC algorithm was superior to the ABC algorithm in terms of convergence,non-inferior solution set,diversity indicators,generational dis tance,computational accuracy,convergence speed and operational efficiency,more suitable for realizing multi-objective optimization.
作者 张平华 杨粟涵 ZHANG Pinghua;YANG Suhan
出处 《芜湖职业技术学院学报》 2023年第4期38-43,共6页 Journal of Wuhu Institute of Technology
基金 安徽省高等学校2020年拔尖学科(专业)人才学术资助项目“拔尖学科(专业)人才”(项目号:gxbjZD2020116) 2022年度安徽省高校自然科学研究项目“基于人工蜂群算法的城市生活垃圾回收物流网络优化设计研究”(项目号:2022AH052236)。
关键词 人工蜂群算法 智能算法 多目标约束优化 artificial bee colony algorithm intelligent algorithms multi-objective constraints optimization
  • 相关文献

参考文献11

二级参考文献35

  • 1张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-173. 被引量:59
  • 2Karaboga D, Basturk B. On the performance of arti- ficia:l bee colony (ABC) algorithm[J]. Applied Soft Computing, 2008,8(1) :687-697. 被引量:1
  • 3Reza A, Ramin H, Koorush Z, et al. A multi-ob- jective artificial bee colony algorithm[J]. Swarm and Evolutionary Computation, 2012,2 ( 1 ) : 39-52. 被引量:1
  • 4Huang V L, Suganthan P N, Qin A K, et al. Multi- objective di//erential evolution with external archive and harmonic distance-based diversity measure[R]~. Nanyang Technological University, Singapore, 2005. 被引量:1
  • 5Wang Mao-cai, Dai Guang-ming, Hu Han-ping, et al. Improved NSGA-II Algorithm for optimization of constrained functions[C] // 2010 International Con- ference on Machine Vision and Human-machine In- terface, Kaifeng, China, 2010. 被引量:1
  • 6Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization [J]. IEEE Trans on Evolutionary Computation, 2004,8(3) : 256-279. 被引量:1
  • 7Dorgo M,Maniezzo V,Colomi A.The ants system:optimization by a colony of cooperating agents[J].IEEE Transations on System,Man and Cybernetics Part B:Cybernetics,1996,26(1):29-41. 被引量:1
  • 8Kennedy J,Ebethart R.Particle swarm optimization[C]//Proceeding of IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Computer Society,1995:1942-1948. 被引量:1
  • 9Ulungu L E,Teghem J.Multi-objective combinatorial optimization problems[J]:A survey.Journal of Multicriteria Decision Analysis,1994,3:83-104. 被引量:1
  • 10Coello Coello CA,Pulido G T,Lechuga M S.Handling multiple objectives with particle swarm optimization[J].IEEE Transations on Evolutionary Computation,2004,8(3):256-279. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部