期刊文献+

基于交叉的全局人工蜂群算法的研究 被引量:6

Research on global artificial bee colony algorithm based on crossover
下载PDF
导出
摘要 人工蜂群(Artificial Bee Colony,ABC)算法在求解函数最优值时,存在后期收敛速度慢、易于陷入局部最优、疏于开发等问题.为了解决这些问题,对算法进行了深入研究,结合其他仿生智能优化算法的机制,提出了一种能有效提高收敛速度,增强算法开发性和全局寻优能力,并能有效避免种群个体陷入局部最优的算法——基于交叉的全局人工蜂群算法.选取7个标准测试函数进行实验仿真,结果表明,与ABC算法、全局最优人工蜂群算法(GABC)相比,基于交叉的全局人工蜂群算法(CGABC)的收敛速度及精度均有明显提高. The shortcomings of artificial bee colony algorithm include slow convergence speed,easily falling into local optimum value,neglect of development and other issues.In order to overcome these problems,referencing the mechanism of other bionic intelligent optimization algorithms,a new algorithm of global artificial bee colony algorithm based on crossover is proposed,which can effectively improve the convergence rate,enhance the development of the algorithm and the global optimization ability,and the algorithm can effectively avoid the local optimum.Finally,seven standard test functions are selected to carry out the experiment and simulation.The results show that the convergence speed and accuracy of the proposed algorithm(CGABC)are significantly improved compared with other algorithms such as ABC algorithm,GABC algorithm and so on.
出处 《山东理工大学学报(自然科学版)》 CAS 2017年第5期6-11,17,共7页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金项目(71271071) 安徽省自然科学基金项目(KJ2016A304 KJ2016A308)
关键词 智能算法 交叉 全局 人工蜂群算法 intelligent algorithm cross global artificial bee colony algorithm
  • 相关文献

参考文献6

二级参考文献63

  • 1冯远静,冯祖仁,彭勤科.一类自适应蚁群算法及其收敛性分析[J].控制理论与应用,2005,22(5):713-717. 被引量:18
  • 2戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17. 被引量:1
  • 3毛韶阳,李肯立.优化K-means初始聚类中心研究[J].计算机工程与应用,2007,43(22):179-181. 被引量:26
  • 4Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Erciyes University, Engineering Faculty, Computer Engineering Department, 2005. 被引量:1
  • 5Dervis Karaboga, Bahriye Akay. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132. 被引量:1
  • 6Guopu Zhu, Sam Kwong. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173. 被引量:1
  • 7Xu Chunfan, Duan Haibin. Artificial bee colony(ABC) optimized edge potential function(EPF) approach to targetrecognition for low-altitude aircraft[J]. Pattern Recognition Letters, 2010, 31(13): 1759-1772. 被引量:1
  • 8Szeto W Y, Wu Yongzhong, Sin C Ho. An artificial bee colony algorithm for the capacitated vehicle routing problem[J]. European J of Operational Research, 2011, 215(1): 126-135. 被引量:1
  • 9Omkar S N, Senthilnath J, Rahul Khandelwal, et al. Artificial bee colony(ABC) for multi-objective design optimization of composite structures[J]. Applied Soft Computing, 2011, 11(1): 489-499. 被引量:1
  • 10Ming-Huwi Homg. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation[J]. Expert Systems with Applications, 2011, 38(11): 13785-13791. 被引量:1

共引文献1010

同被引文献46

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部