期刊文献+

基于改进的快速鲁棒特征算法的人脸检测研究 被引量:1

Face detection based on improved speeded up robust features algorithm
下载PDF
导出
摘要 针对快速鲁棒特征(SURF)算法冗余信息多且计算速度慢的缺点,该文对SURF算法进行改进,用于人脸检测。计算特征点邻域的图像熵,并使用非极大值抑制提取图像熵高的特征点,通过减少区域描述减少冗余信息。使用扇形窗口遍历各特征点邻域,通过计算窗口内哈尔小波响应构建该点的特征描述子,从而加快计算速度。使用费舍尔矢量核将各特征描述子映射到高维空间进行人脸检测。仿真实验表明,在应用于人脸检测数据集和基准(FDDB)数据集时,与SURF算法相比,该文算法检测率提高了7.9%,特征计算时间减少了53.1%,特征点数减少了59.7%。 An improved speeded up robust features(SURF) algorithm is used in face detection aming at the shortcomings of many redundant information and low computing speed of the SURF algorithm.The image entropy of neighborhood of each feature point is calculated,and the feature points with high image entropy are selected by non-maximum suppression to decrease description area and redundant information.A fan window is used to traverse the neighborhood of each feature point,and Haar wavelet response in the fan window is calculated to form the descriptor of each feature point,and the computing speed is faster.Each descriptor is mapped into a high dimensional space by Fisher vector kernel for face detection.The simulation results in face detection data set and benchmark(FD-DB) show that,compared with that of SURF algorithm,the detection rate of the improved SURF algorithm increases by 7.9%,the feature calculation time decreases by 53.1%,and the feature points decreases by 59.7%.
作者 洪杨 于凤芹
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2017年第6期714-719,共6页 Journal of Nanjing University of Science and Technology
关键词 快速鲁棒特征 人脸检测 图像熵 非极大值抑制 哈尔小波响应 费舍尔矢量核 speeded up robust features face detection image entropy non-maximum suppression Haar wavelet response Fisher vector kernel
  • 相关文献

参考文献5

二级参考文献32

  • 1李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 2Cristinace David, Cootes Tim, Scott Ian. A multi-stage approach to facial feature detection [ A ]. In: British Machine Vision Conference [ C ] , Kingston University UK, London 2004,1:277 ~ 286. 被引量:1
  • 3Viola Paul, Jones Michael. Robust real-time face detection [ J ].International Journal of Computer Vision 2004,57 ( 2 ): 137 ~ 154. 被引量:1
  • 4Martinez A M, Benavente R. The AR face database [ R ]. In:Computer Vision Center at U. A. B Technical Report #24. 1998 [ EB/OL]. http:∥rvll. ecn. purdue. edu/~ aleix/ar. html 被引量:1
  • 5Freund Y, Schapire R E. Experiments with a new boosting algorithm [ A]. Proceedings of the 13th Conference on Machine Learning [ C ]. USA : International Machine Learning Society, 1996. 148 - 156. 被引量:1
  • 6Schapire R E, Singer Y. Improved boosting algorithms using confidence-rated predictions [ J ]. Machine Learning, 1999, 37(3) : 297 -336. 被引量:1
  • 7Liu C, Shum H. Kullback-Leibler Boosting [ A ]. Proceedings of IEEE Conference on CVPR' 2003 [ C]. Washington, D. C. , USA: IEEE Computer Society, 2003. 587 - 594. 被引量:1
  • 8Li S Z, Zhang Z. Floatboost learning and statistical face detection [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (9) : 1 112 - 1 123. 被引量:1
  • 9Huang C, Ai H Z, Li Y, et al. High-performance rotation invariant multiview face detection [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence,2007, 29 (4) : 671 - 686. 被引量:1
  • 10Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [ A ]. Proceedings of IEEE Conference on CVPR' 2001 [ C ]. Washington, D. C. , USA:IEEE Computer Society,2001. 511 -518. 被引量:1

共引文献59

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部