期刊文献+

一种基于距离约束的改进SURF算法 被引量:5

Improved SURF Algorithm Based on Distance Constraint
下载PDF
导出
摘要 图像特征点匹配算法是增强现实几何一致性技术中的核心算法,目前图像特征点匹配算法耗时较大,准确性较差。提出了一种基于距离约束的改进SURF(Speeded-up Robust Features)算法:在特征点检测阶段,动态构建高斯金字塔图层,提高特征点提取的实时性和准确性;特征点的优化处理,避免提取到的图像特征点出现聚集现象。在特征点匹配阶段,对提取到的特征点构建KD-tree树索引,提高特征匹配的实时性和准确性。实验表明,改进的SURF算法有效地解决了目前方法存在特征提取时间相对较长,特征点匹配误差较大的缺点。 Algorithm for feature point matching is the core algorithm of geometric consistency technology in augmented reality area, while algorithms for feature point matching are time-consuming and have poor matching accuracy. An improved SURF (Speeded-up Robust Features) algorithm based on distance constraint was proposed. In process of detecting feature points, Gaussian Pyramid Layers was built dynamically to improve real-time and accuracy. And feature points were optimized to avoid feature points appearing on aggregation. In the stage of feature points' matching, the KD-tree indexes were constructed to improve real-time and accuracy. The experiment results indicate that the improved SURF algorithm effectively solves the problem of the current algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第12期2944-2949,2956,共7页 Journal of System Simulation
基金 "核高基"重大专项(2009ZX01038-002-002-2) 技部"原创动漫软件开发技术人才"计划扶持项目(2009-593)
关键词 几何一致性 SURF KD-TREE 聚集 特征匹配 geometric consistency SURF KD-tree aggregation feature matching
  • 相关文献

参考文献10

二级参考文献37

  • 1郭薇,耿伯英,陈文静.改进的KMP算法在舰船图像匹配中的应用[J].舰船电子工程,2008,28(6):113-116. 被引量:7
  • 2陈作平,叶正麟,赵红星,郑红婵.结合K均值聚类和KD-Tree搜索的快速分形编码方法[J].计算机辅助设计与图形学学报,2006,18(7):965-970. 被引量:6
  • 3Zhou F,Duh H,Billinghurst M.Trends in Augmented Reality Tracking,Interaction and Display:A Review of Ten Years of ISMAR[C] //Proc.of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.Cambridge,UK:[s.n.] ,2008. 被引量:1
  • 4Lowe D G.Distinctive Image Features from Scale-invariant Keypoints[J].Proc.of IJCV,2004:60(2):91-110. 被引量:1
  • 5Lepetit V,Pilet J,Fua P.Point Matching as a Classification Problem for Fast and Robust Object Pose Estimation[C] //Proc.of Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:[s.n.] ,2004. 被引量:1
  • 6(O)zuysal M,Calonder M,Lepetit V.Fast Keypoint Recognition Using Random Ferns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,24(7):971-987. 被引量:1
  • 7Bay H,Tuytelaars T,van Gool L.SURF:Speeded Up Robust Features[C] //Proc.of ECCV'06.Graz,Austria:[s.n.] ,2006. 被引量:1
  • 8David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(2): 20. 被引量:1
  • 9Rahul Sukthankar, Yan Ke. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattem Recognition. USA: 1EEE, 2004, 1063-6919/04(2004 IEEE): 8. 被引量:1
  • 10K Mikolajczyk, B Leibe, B Schiele. Local Features for Object Class Recognition [C]// Proc. IEEEE Int'l Conf. Computer Vision, 2005. USA: IEEE, 2005, vol.2: 1792-1799. 被引量:1

共引文献130

同被引文献32

引证文献5

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部