期刊文献+

镜像基函数下过渡投影子空间人脸特征抽取算法 被引量:3

Face Feature Extraction Approach of Projective Transition Sub-space Based on Basis Function of Mirror Symmetry
下载PDF
导出
摘要 为强化鉴别信息的完整性,提升解决小样本问题(SSSP)的能力,该文构造了一种求解具有几何对称性的样本鉴别信息的特征抽取算法。从线性子空间的角度出发,利用人脸的几何对称性,依据奇偶分解原理,在原特征空间生成一组镜像对称基函数。构造一种矩阵变换,求出两个对称基之间的过渡矩阵,并在过渡矩阵空间上求取最优鉴别矢量集。该方法强化了鉴别信息的完整性,对解决SSSP是有效的。在ORL和FERET人脸数据库上的实验结果验证了算法的有效性。 To enhance the integrity of discrimination information and improve the ability of solving small sample size problems(SSSP) ,a feature extraction approach is constructed to solve the sample identification information with geometric symmetry. From the view of linear subspace, a set of mirror symmetrical basis functions are constructed in original space according to the geometric symmetry of face images and the odd-even decomposition theorem. A matrix transform is presented to obtain the transition matrix between the two odd-even basis functions. The optimal discrimination vectors are obtained in the transition matrix space. This method enhances the integrity of discrimination information and solves the SSSP effectively. Experimental results from the ORL and FERET face image databases demonstrate the effectiveness of the proposed method.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2012年第6期915-918,共4页 Journal of Nanjing University of Science and Technology
基金 中国博士后科学基金(2011M500926) 江苏省自然科学基金(BK2012700 BK2011371) 江苏省博士后科学基金(1102063C) 人工智能四川省重点实验室开放基金重点项目(2012RZY02)
关键词 镜像基函数 过渡矩阵 人脸识别 小样本问题 basis function of mirror symmetry transition matrix face recognition small sample size problem
  • 相关文献

参考文献10

  • 1Fukunaga K. Introduction to statistical pattern recognition [M].2nd ed. New York,USA:Academic Press,1990. 被引量:1
  • 2Song Xiaoning, Zheng Yujie, Wu Xiaojun, et al. A complete fuzzy discriminant analysis approach for face recognition [ J ]. Applied Soft Computing, 2010, 15 (10) :208-214. 被引量:1
  • 3Song Xiaoning, Yang Xibei, Zheng Yujie, et al. Discriminant analysis approach using fuzzy fourfold subspaces model [ J ]. Neurocomputing, 2010,73 ( 10 ) : 2255 -2265. 被引量:1
  • 4Marcel S. A symmetric transformation for LDA-based face verification [ A ]. Proceedings of the 6th International Conference on Automatic Face and Gesture Recognition [ C ]. New York, USA : IEEE,2004,207-212. 被引量:1
  • 5严云洋,郭志波,陈伏兵,杨静宇.融合多尺度多特征的人脸识别方法[J].南京理工大学学报,2009,33(1):47-52. 被引量:4
  • 6AT&T Laboratories Cambridge. ORL face database [ EB/OL]. http://www. camorl. co. uk/facedatabase. htm ,2009-02-14. 被引量:1
  • 7Phillips P J, Moon H, Rizvi S A, et al. The FERET evaluation methodology for face-recognition algorithms [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(10) : 1090-1104. 被引量:1
  • 8Belhumeur P N, Hespanha J P, Kriegman D J, et al. Fisherfaces: Recognition using class specific linear projection[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7 ) :711-720. 被引量:1
  • 9Yu H, Yang J. A direct LDA algorithm for highdimensional data-with application to face recognition [ J ]. Pattern Recognition ,2001,34( 11 ) :2067-2070. 被引量:1
  • 10Yang J,Frangi A F, Yang J Y, et al. KPCA plus LDA:A complete kernel Fisher discriminant framework for feature extraction and recognition [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2005,27 (2) : 230-244. 被引量:1

二级参考文献18

  • 1洪子泉,杨静宇.基于奇异值特征和统计模型的人像识别算法[J].计算机研究与发展,1994,31(3):60-65. 被引量:49
  • 2杜干,朱雯君.基于局部奇异值分解和模糊决策的人脸识别方法[J].中国图象图形学报,2006,11(10):1456-1459. 被引量:20
  • 3Belhumeur P N, Hespanha J P, Kriegman D. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720. 被引量:1
  • 4Hong Zi-quan. Algebraic feature extraction of image for recognition[ J ]. Pattern Recognition, 1991, 24 ( 3 ) : 211 -219. 被引量:1
  • 5Tian Yuan, Tan Tie-niu, Wang Yun-hong, et al. Do singular values contain adequate information for face recognition [ J ]. Pattern Recognition, 2003, 36 (6) : 649 - 655. 被引量:1
  • 6Folye D H, Sammon J W. An optimal set of discriminant vectors [ J ]. IEEE Transaction on Computer, 1975, 24(3) : 281 -289. 被引量:1
  • 7Chen L F, Liao H Y M, Ko J C, et al. A new LDA- based face recognition system which can solve the small sample size problem [ J ]. Pattern Recognition, 2000, 33 : 1713 - 1726. 被引量:1
  • 8Rajkiran G, Vijayan K A. An improved face recognition technique based on modular PCA approach [ J ]. Pattern Recognition Letters, 2004, 25:429 -436. 被引量:1
  • 9Yang Jian, Yang Jing-yu, Zhang David, et al. Feature fusion: Parallel strategy vs. serial strategy [ J ]. Pattern Recognition, 2003, 36: 1369- 1381. 被引量:1
  • 10Ludmila I K. A theoretical study on six classifier fusion strategies [ J ]. IEEE Trans on PAMI, 2002, 24 (2) : 281 - 286. 被引量:1

共引文献3

同被引文献31

  • 1杨章静,刘传才,顾兴健,朱俊.依概率分类的保持投影及其在人脸识别中的应用[J].南京理工大学学报,2013,37(1):7-11. 被引量:6
  • 2朱文佳,戚飞虎.快速人脸检测与特征定位[J].中国图象图形学报,2005,10(11):1454-1457. 被引量:9
  • 3ZHANG Z, WANG J, ZHAN H. Adaptive manifold learning [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2012, 34 ( 1 ) : 131-137. 被引量:1
  • 4CONNOLLY J F, GRANGER E, MAMBOURIN R. An adaptive classifi- cation system for video-based face recognition[ J ]. Information Sciences, 2012, 192( 1 ) : 50-70. 被引量:1
  • 5HAFIZ F, SHAFER A A, MUSTAFA Y M. Face recognition from single sample per person by learning of generic discriminant vectors[ J]. Procar- dia Engineering,2012,45 ( 3 ) : 465-472. 被引量:1
  • 6XIE Z,LIU G,FANG Z. Face recognition based on combination of human perception and local binary pattern [ J ]. Lecture Notes in Computer Sci- ence,2012,72(2) : 365-373. 被引量:1
  • 7AGGARWAL C C. High-Dimensional outlier detection: the subspace method [ M J. New York : Springer, 2013 : 135 -167. 被引量:1
  • 8WANG R,SHAN S,CHEN X, et al. Manifold - manifold distance and its application to face recognition with image sets[ J]. IEEE Trans. Pat- tern Analysis and Machine Intelligence, 2012, 21 (10) : 4466-4479. 被引量:1
  • 9WANG R,SHAN S,CHEN X, et al. Maximal linear embedding for di- mensionality reduction [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence,2011, 33(9) : 1776-1792. 被引量:1
  • 10VERBEEK J J. Learning nonlinear image manifolds by global alignment of local linear models [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2006, 28(8) :1236-1250. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部