期刊文献+

一种改进的AdaBoost算法——AD AdaBoost 被引量:53

A Revised AdaBoost Algorithm——AD AdaBoost
下载PDF
导出
摘要 目标检测问题是计算机视觉领域最普遍和关键的问题之一.基于级联结构的AdaBoost算法目前被认为是较有效的检测算法,但是其在低FRR端的性能仍需改进.文章提出了一种针对目标检测问题的改进AdaBoost算法———AD AdaBoost.AD AdaBoost采用了新的参数求解方法,弱分类器的加权参数不但与错误率有关,还与其对正样本的识别能力有关.该算法能够有效地降低分类器在低FRR端的FAR,使其更适用于目标检测问题.新旧算法在复杂背景中文字检测的实验结果对比证实了新算法在性能上的改进. Object detection is one of the most popular and important issues in the domain of cornputer vision. AdaBoost algorithm based on cascade structure can solve the problem effectively, however it has its own shortcoming. This paper proposes a revised type of AdaBoost algorithm, AD AdaBoost. AD AdaBoost adopts a new method to acquire parameters. The weighted parameters of weak classifiers are determined not only by the error rates, but also by their abilities to recognize the positive samples. The algorithm can decrease the classifiers' false alarm rates in the low false rejection rate end, so it is more adaptive to the object detection based on cascade structure. The experiment results prove the improvement achieved by the new algorithm.
出处 《计算机学报》 EI CSCD 北大核心 2007年第1期103-109,共7页 Chinese Journal of Computers
基金 国家自然科学基金(60472002)资助.
关键词 AD Adat300st 目标检测 级联结构 弱分类器 加权参数 AD AdaBoost object detection cascade structure weak classifier weighted parameter
  • 相关文献

参考文献9

  • 1Papageorgiou C P,Oren M,Poggio T.A general framework for object detection//Proceedings of the 6th International Conference on Computer Vision.Bombay,India,1998:555-562 被引量:1
  • 2Schneiderman H,Kanade T.A statistical method for 3D object detection applied to faces and cars//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.USA,2000:746-751 被引量:1
  • 3Rowley H A,Baluja S,Kanade T.Neural network-based face detection.IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):22-38 被引量:1
  • 4Viola P,Jones M.Robust real time object detection//Proceedings of the 2nd International Workshop on Statistical and Computational Theories of Vision.Vancouver,Canada,2001 被引量:1
  • 5Tu Zhuo-Wen,Chen Xiang-Rong,Yuille A.L.,Zhu SongChun.Image parsing:Unifying segmentation,detection,and recognition//Proceedings of the International Conference on Computer Vision.Nice,France,2003:18-25 被引量:1
  • 6Fan Wei,Stolfo S,Zhang Jun-Xin,Chan P.Adacost:Mis classification cost-sensitive boosting//Proceedings of the 16th International Conference on Machine Learning,Bled,Slovenia,1999:97-105 被引量:1
  • 7Ma Yong,Ding Xiao-Qing.Real-time rotation invariant face detection based on cost-sensitive AdaBoost//Proceedings of the IEEE International Conference on Image Processing.Barcelona,Spain,2003,2..921-924 被引量:1
  • 8Viola P,Jones M.Fast and robust classification using asymmetric AdaBoost and a detector cascade//Advances in Neural Information Processing System 14.Cambridge,MA:MIT Press,2002:1311-1318 被引量:1
  • 9Freund Y,Schapire R E.A decision-theoretic generalization of on-line learning and an application to boosting.Journal of Computer and System Sciences,1997,55(1):119-139 被引量:1

同被引文献407

引证文献53

二级引证文献205

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部