期刊文献+

基于Boosting算法和RBF神经网络的交通事件检测 被引量:5

Traffic incidents detection based on Boosting method and RBF neural network
下载PDF
导出
摘要 提出一种新颖的基于Boosting RBF神经网络的交通事件检测方法。对Boosting算法进行改进,采用更有效的参数求解方法,即弱分类器的加权参数不但与错误率有关,还与其对正样本的识别能力有关。以上下游的流量和占有率作为特征,将RBF神经网络作为分类器进行交通事件的自动分类与检测。为了进一步提高神经网络的泛化能力,采用Boosting方法进行网络集成。最后运用Matlab进行了仿真分析,结果表明提出的交通事件检测算法利用较少样本数据即可快速实现交通事件检测。 A new method was proposed for traffic incidents detection based on Boosting RBF neural network. The improved Boosting adopted a new method to acquire parameters, and the weighted parameters of weak classifiers were determined not only by the error rates, but also by their abilities to recognize the positive samples. The features of flow and occupancy rate were extracted from traffic incidents. Then RBF neural network was used to classify the traffic incidents. In order to improve the precision of the RBF neural network for traffic incidents detection, Boosting algorithm was used to build an integration-neural network. Finally a simulation using Matlab was carried out, and the results show that this algorithm can detect incidents rapidly by using a few samples.
出处 《计算机应用》 CSCD 北大核心 2007年第12期3105-3107,共3页 journal of Computer Applications
基金 河北省自然科学基金资助项目(F2007000682)
关键词 交通事件检测 BOOSTING方法 RBF神经网络 traffic incidents detection Boosting method RBF neural network
  • 相关文献

参考文献4

二级参考文献9

  • 1荆便顺.一段道路交通脉冲响应的识别及其应用[J].信息与控制,1995,24(3):177-182. 被引量:10
  • 2[1] LINDLEY J A. Quantification of urban freeway con-gestion and an alysis of remedial measures[R].Federal Highway Administration,Washington,DC., 1986. 被引量:1
  • 3[2] BALKE K N, ULLMAN G L. Method for selecting among alternativ e incident detection strategies[R].Texas Transportation Institute,1993. 被引量:1
  • 4[3] ROPER D H.Freeway incident management.NCHRP synthesis of highway p ractice 156[R].National Research Council,Washington DC,1990. 被引量:1
  • 5[4] RAZAVI A. A survey of automatic incident detection systems[R].P repared for Province of British Columbia Ministry of Transportation and Highways,Victori a,BC,Canada,1995. 被引量:1
  • 6[5] RAZAVI A.Development of a new automatic incident detection system for freeway using a B1-classifier approach[D].Ph.D.Thesis at the University of British Columbia,Canada,1998. 被引量:1
  • 7[6] ABDULHAI B, RITCHIE S G. Enhancing the univ-ersality and tran sferability of freeway incident detection using a bayesian based neural network [R].Transportation Research Part C,1999.261-280. 被引量:1
  • 8谭光莉,姜紫峰.高速公路事故自动检测算法的探讨[J].西安公路交通大学学报,1999,19(3):55-57. 被引量:11
  • 9焦李成.神经网络专家系统——基本理论与实现[J].系统工程与电子技术,1990,12(7):7-16. 被引量:86

共引文献121

同被引文献51

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部