摘要
针对具有非线性特性的采样系统的建模提出了一种新的方法.具体实现是:首先得到非线性采样系统的状态空间模型;然后把两个采样时刻之间的非线性响应分解为一个线性响应和一个非线性扰动;进而采用解析积分来得到其线性响应的表达式,采用正交多项式级数来近似非线性扰动部分的响应,然后把这两部分响应组合起来就得到非线性采样系统的解.仿真结果表明,本文提出的建模方法相比于常用的时间推进法,不仅能够获得较高的准确性,而且还能够减少仿真时间.
A new method used to model the sampled systems with nonlinear characteristics is proposed in this paper.The concrete implementation is firstly to obtain the state space model of the nonlinear sampled system,and then the nonlinear esponse between two sampling moments is decomposed into a linear response and a nonlinear disturbance.Furtherly,the expressions of the linear response is achieved by analytical integral way,and the response of nonlinear perturbation part is approximated by the orthogonal polynomial series,then the solution for the nonlinear sampled system is obtained through the combination of two responses achieved above.The simulation results show that the proposed method,compared with the time marching way used commonly,not only obtain higher accuracy,but also reduce simulation time.
出处
《吉林师范大学学报(自然科学版)》
2017年第1期101-107,共7页
Journal of Jilin Normal University:Natural Science Edition
基金
四川省科技厅支撑项目(2014SZ0104)
西华师范大学基本科研业务费专项资金资助项目(14C002)
西华师范大学基本科研业务费专项资金重点培育资助项目(13C002)
南充市科技支撑项目(15A0068)
关键词
非线性特性
状态空间模型
解空间向量
响应
仿真时间
nonlinear characteristics
state space model
solution space vector
response
simulation time