期刊文献+

基于微分算子小波变换的分布参数系统辨识 被引量:4

Identification of Distributed Parameter Systems Based on Wavelet Transform of Differential Operators
下载PDF
导出
摘要 基于微分算子在紧支撑正交小波基下的精确显式表示,给出了一种分布参数系统辨识方法。将微分算子投影到小波空间,得出其矩阵表示形式,从而将分布参数系统转化为集中参数系统,再利用最小二乘参数估计的一次完成算法进行辨识。该方法不需要考虑初始条件和边界条件的影响,降低了计算的复杂程度;基于Daubechies(db1)小波的数值计算表明,在小波分解层数很低的情况下,辨识就具有很高的精度。 Based on the exact and explicit representations of differential operators in orthonormal ba- ses of compactly supported wavelets, this paper presents an identification method for distributed parameter systems (DPS). The matrix representations are obtained by projecting differential operators onto wavelet space. The proposed method translates DPS into lumped parameter systems. Identifica- tion can be made with the algorithm of least square parameter estimation. The complexity of computation decreases because boundary conditions and initial conditions need little consideration. Numerical experiments are performed based on the wavelet of Daubechies (dbl) and the results are accurate even with very low level of wavelet decomposition.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2007年第4期449-452,共4页 Journal of Nanjing University of Science and Technology
基金 国防科技重点实验室基金项目 南京理工大学科研发展基金项目(XKF07010)
关键词 分布参数系统 辨识 微分算子 小波变换 distributed parameter systems identification differential operators wavelet transform
  • 相关文献

参考文献8

二级参考文献7

  • 1崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995.. 被引量:324
  • 2陆金浦 关治.偏微分方程数值解法[M].北京:清华大学出版社,1987.. 被引量:1
  • 3[1]Daubechies I. Orthogonal Bases of Compactly Supported Wavelets. Comm. Pure. Appl. Math., 1988,7:909-996 被引量:1
  • 4[2]Beylkin G. On the Representation of Operators in Bases of Compactly Supported Wavelets. SIAM J. Numer, Anal., 1992, 6:1716-1740 被引量:1
  • 5[3]Glowinski R, Lawton W. Wavelet Solution of Linear and Nonlinear Elliptic, Parabolic, and Hyperbolic Problems in One Space Dimension. Comp. Math. Appl. Sciences and Engineering, SIAM Publ.,Philadelphia, PA, 1990 被引量:1
  • 6Voros J.Parameter identification of Wiener systems with discontinuous nonlinearities [J].Elsevier Science (B V),2001,44:363-372. 被引量:1
  • 7Schetzen M.Nonlinear system modeling based on the Wiener theory[J].IEEE Trans on Proc ,1981,(11):1 557-1 573. 被引量:1

共引文献20

同被引文献14

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部