期刊文献+

基于Chebyshev小波的分布参数系统辨识

Identification of Distributed-parameter Systems via Chebyshev Wavelets
下载PDF
导出
摘要 工程实际和社会系统中广泛存在着分布参数系统,因而研究分布参数系统的辨识与控制具有重要意义。但由于其复杂性,对分布参数系统的辨识研究十分困难。借助于Chebyshev多项式的逼近性质,以及小波的时频特性,构造了Chebyshev小波,并利用其积分运算矩阵,运用于分布参数系统的辨识,从而将一类分布参数系统的辨识问题转化为一般代数问题。并且考虑了初始条件和边界条件对辨识结果的影响,因此具有较好的适用性,仿真结果证实了该方法的有效性。 The identification and control distributed parameter systems (DPS) existing in engineering and society systems are discussed. Based on the function approximation of the Chebyshev polynomials and the time-frequency characteristics of wavelets, the Chebyshev wavelets are constructed. The operational matrix of integration for Chebyshev wavelets is used in DPS, and the identification problem of DPS is transformed to an algebraic problem. The proposed method is more applicable in consideration of the effect of the initial and boundary conditions on the identification results. The simulation result shows that the approach is feasible.
出处 《控制工程》 CSCD 北大核心 2009年第6期720-722,730,共4页 Control Engineering of China
基金 上海市教育委员会科研基金资助项目(040B04)
关键词 Chebyshev小波 分布参数系统 参数辨识 函数逼近 Chebyshev wavelets distributed parameter systems parameter identification function approximation
  • 相关文献

参考文献6

二级参考文献26

  • 1孙冬梅,李永新,卜雄洙.一种使用正交函数的非线性系统建模方法[J].南京理工大学学报,2004,28(6):612-616. 被引量:2
  • 2[2]Chen S, Billings S A, Luo W. Orthogonal least squares methods and their application to nonlinear system identification [J]. International Journal of Control, 1989, 50(5 ): 1873 ~ 1896. 被引量:1
  • 3[3]Zhu Q M, Billings S A. Parameter estimation for stochastic nonlinear rational models [ J ]. International Journal of Control,1993, 57(2): 309 -333. 被引量:1
  • 4[4]Jonas S, Qinghua Z, Lennart L, et al. Non-linear black-box modeling system identification: a unified overview [ J]. Automatica,1995, 31(12): 1691 ~1724. 被引量:1
  • 5[5]Qinghua Z, Benveniste A. Wavelet networks [ J ]. IEEE Transactions on Neural Networks, 1992, 3(6): 889 ~898. 被引量:1
  • 6[6]Jun Z, Gilbert G W, Yubo M, et al. Wavelet neural networks for function learning [ J]. IEEE Transactions on Signal Processing,1995, 43(6): 1485 ~ 1496. 被引量:1
  • 7[7]Zhang Q H. Using wavelet network in nonparametric estimation [J]. IEEE Transactions on Neural Networks, 1997, 8(2): 227~236. 被引量:1
  • 8[8]Tan Y H, Dang X J, Liang F, et al. Dynamic wavelet neural network for nonlinear dynamic system identification [ A ]. Proceedings of the 2000 IEEE International Conference on Control Applications[C] . Alaska, USA: IEEE, 2000. 214 ~219. 被引量:1
  • 9[9]Coca D, Billings S A. Non-linear system identification using wavelet multi-resolution models [J]. International Journal of Control, 2001,74(18): 1718 ~ 1736. 被引量:1
  • 10[10]Tharmarajah K, Qinghua Z. Multidimensional wavelet frames [J]. IEEE Transactions on Neural Networks, 1995,6(6): 1552~1556. 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部