摘要
工程实际和社会系统中广泛存在着分布参数系统,因而研究分布参数系统的辨识与控制具有重要意义。但由于其复杂性,对分布参数系统的辨识研究十分困难。借助于Chebyshev多项式的逼近性质,以及小波的时频特性,构造了Chebyshev小波,并利用其积分运算矩阵,运用于分布参数系统的辨识,从而将一类分布参数系统的辨识问题转化为一般代数问题。并且考虑了初始条件和边界条件对辨识结果的影响,因此具有较好的适用性,仿真结果证实了该方法的有效性。
The identification and control distributed parameter systems (DPS) existing in engineering and society systems are discussed. Based on the function approximation of the Chebyshev polynomials and the time-frequency characteristics of wavelets, the Chebyshev wavelets are constructed. The operational matrix of integration for Chebyshev wavelets is used in DPS, and the identification problem of DPS is transformed to an algebraic problem. The proposed method is more applicable in consideration of the effect of the initial and boundary conditions on the identification results. The simulation result shows that the approach is feasible.
出处
《控制工程》
CSCD
北大核心
2009年第6期720-722,730,共4页
Control Engineering of China
基金
上海市教育委员会科研基金资助项目(040B04)
关键词
Chebyshev小波
分布参数系统
参数辨识
函数逼近
Chebyshev wavelets
distributed parameter systems
parameter identification
function approximation