期刊文献+

基于小波分解的非线性系统多模型自适应控制 被引量:1

Multiple Models Adaptive Control of Nonlinear System Based on Wavelet Decomposition
下载PDF
导出
摘要 提出了一种改进的基于小波分解的非线性系统辨识算法,利用小波函数的逼近能力在线辨识被控对象的非线性项。针对基于小波分解的辨识算法缺乏预测能力,提出了根据线性鲁棒自适应控制器提供的当前控制信息预测未来的非线性项值新方法,并结合多模型方法,根据所定义的切换指标自动切换到当前最优控制器。仿真结果表明,改进的基于小波分解的辨识算法能够有效逼近非线性系统,基于小波分解的非线性系统多模型自适应控制方法改善了系统性能,随着系统运行跟踪误差明显减小,说明了该方法的有效性和可行性。 A nonlinear system identification algorithm based on improved wavelet decomposition is proposed which uses the approximation ability of wavelet function to identify nonlinear terms. Since the identification algorithm based on wavelet decomposition lacks of prediction ability, a new method is proposed which relies on the current control information provided by linear robust adaptive controller to predict the nonlinear term, and uses multiple models to build two adaptive models and switch to the optimum controller according to switching function. The results of two simulation examples show that the identified system based on improved identification algorithm is close to the real nonlinear system, and the control approach can improve the system performance greatly. The obviously reduced error illustrates the effectiveness of this method.
出处 《计算机仿真》 CSCD 2007年第8期150-154,共5页 Computer Simulation
关键词 小波 非线性系统 多模型 自适应控制 Wavelet Nonlinear system Multiple models Adaptive control
  • 相关文献

参考文献11

  • 1H J Lee,J B Park,G Chen.Robust fuzzy control of nonlinear system with parametric uncertainties[J].IEEE Transaction on Fuzzy Systems,2001,9(2):369-379. 被引量:1
  • 2B S Chen,C S Tsong,H J Uang.Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems:An LMI approach[J].IEEE Transaction on Fuzzy Systems,2000,8(3):249-265. 被引量:1
  • 3G P LIU,S A KADIRKAMANATHAN V,BILLINGS.Variable neural networks for adaptive control of nonlinear systems[J].IEEE Trans Systems Man and Cybermetic-Part C,1999,29(1):34-43. 被引量:1
  • 4L J Chen,K S Narendra.Nonlinear Adaptive Control Using Neural Networks and Multiple Models[J]..Automatica,2001,37:1245-1255. 被引量:1
  • 5L J Chen,K S Narendra.Intelligent Control Using Multiple Neural Wetworks[J].Int J of Adaptive Control and Signal Process,2003,17:417-430. 被引量:1
  • 6Y H Tan,et al.Dynamic wavelet neural network for nonlinear dynamic system identification[C].Proceedings of the 2000 IEEE International Conference on Control Applications,Alaska,USA:IEEE,2000.214-219. 被引量:1
  • 7D Coca,S A Billings.Nonlinear system identification using wavelet multi-resolution models[J].International Journal of Control,2001,74(18):1718-1736. 被引量:1
  • 8石宏理,蔡远利,邱祖廉.一种基于小波分解的非线性系统辨识的新方法[J].信息与控制,2004,33(5):554-559. 被引量:4
  • 9K Tharmarajah,Z Qinghua.Multidimensional wavelet frames[J].IEEE Transactions on Neural Networks,1995,6(6):1552-1556. 被引量:1
  • 10富月,柴天佑,岳恒.一类非线性多变量系统的多模型自适应解耦控制[J].控制与决策,2006,21(2):139-142. 被引量:10

二级参考文献18

  • 1Yue H,Chai T Y.Adaptive Decoupling Control of Multivariable Nonlinear Nonminimun Phase Systems Using Neural Networks[A].Proc of the American Control Conf[C].Philadelphia,1998:513-514. 被引量:1
  • 2岳恒 柴天佑.一类多变量非线性系统的神经网络自适应解耦控制[J].信息与控制,1999,28(7):607-612. 被引量:1
  • 3Chen L J,Narendra K S.Nonlinear Adaptive Control Using Neural Networks and Multiple Models[J].Automatica,2001,37:1245-1255. 被引量:1
  • 4Chen L J,Narendra K S.Intelligent Control Using Multiple Neural Networks[J].Int J of Adaptive Control and Signal Process,2003,17:417-430. 被引量:1
  • 5Chai T Y.A Self-tuning Decoupling Controller for a Class of Multivariable Systems and Global Convergence Analysis[J].IEEE Trans on Automatic Control,1988,33(8):767-771. 被引量:1
  • 6Cabrera J B D,Narendra K S.Issues in the Application of Neural Networks for Tracking Based on Inverse Control[J].IEEE Trans on Automatic Control,1999,44(11):2007-2027. 被引量:1
  • 7Chen L,Narendra K S.Identification and Control of a Nonlinear Dynamical System Based on Its Linearization:Part Ⅱ[A].Proc of the American Control Conf[C].Florida,2002:382-387. 被引量:1
  • 8[2]Chen S, Billings S A, Luo W. Orthogonal least squares methods and their application to nonlinear system identification [J]. International Journal of Control, 1989, 50(5 ): 1873 ~ 1896. 被引量:1
  • 9[3]Zhu Q M, Billings S A. Parameter estimation for stochastic nonlinear rational models [ J ]. International Journal of Control,1993, 57(2): 309 -333. 被引量:1
  • 10[4]Jonas S, Qinghua Z, Lennart L, et al. Non-linear black-box modeling system identification: a unified overview [ J]. Automatica,1995, 31(12): 1691 ~1724. 被引量:1

共引文献12

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部