摘要
推出正交函数Haar小波基所对应的乘积运算矩阵fm×m、乘积积分运算矩阵W及其性质,并应用到分布参数系统(DPS)最优控制问题的求解过程中。采用该方法可将偏微分方程描述的DPS问题转化为集总参数系统问题,避免了直接求解偏微分方程解析解的困难,简化了问题的求解,取得了较好的效果。与一般正交基函数逼近方法相比较,该方法具有计算量小、逼近精度高、算法简单等优点,为研究DPS的最优控制问题找到了一条新的途径。仿真结果说明了算法的有效性。
In terms of orthogonal functions of Haar wavelets,the integrated operational matrix fm×m and the product integral operational matrix W and their properties are derived.They are applied to solve the optimal problem of distributed parameter system(DPS).Based on this method,DPS described by partial differential equations(PDEs) can be transformed into lumped parameter systems(LPS).Therefore,this algorithm can avoid the difficulty and complexity of the direct multi-integral of PDEs.Compared with ordinary orthogonal function approximation method,the proposed algorithm is simple and accurate.A new tool is investigated in the optimal control of DPS.Simulation results have verified the proposed algorithm.
出处
《上海电机学院学报》
2011年第2期75-80,共6页
Journal of Shanghai Dianji University
基金
国家高技术研究发展计划(863)项目资助(2009AA04Z141)
上海市教育委员会科研创新项目资助(11YZ267)
上海市教育委员会重点学科资助(J51901)
上海电机学院科研启动基金项目资助(10C416)
关键词
HAAR小波
分布参数系统
乘积运算矩阵
乘积积分运算矩阵
最优控制
Haar wavelet
distributed parameter system(DPS)
integrated operational matrix
product integral operational matrix
optimal control