期刊文献+

非线性耦合KdV方程组的精确行波解研究 被引量:3

Study on the Exact Travelling Wave Solutions of the Nonlinear Coupled KdV Equations
下载PDF
导出
摘要 利用辅助函数法求解非线性耦合KdV方程组,把求解非线性偏微分方程组的问题转为求解代数方程组的问题,进一步应用Maple软件得到方程的十种精确行波解,其中解的形式包括双曲函数、雅克比椭圆函数、三角函数和有理函数等;最后,利用Maple软件给出了某些精确解的图形. When auxiliary functions method is used to solve the nonlinear coupling KdV equations , solving nonlinear partial differential equations of the problem will be transformed into solving algebraic equations .By the further application of the Maple software get ten exact travelling wave solutions , which contain hyperbolic function,Jacobi elliptic function,trigonometric function,rational function and so on.At last,some figures of the obtained solutions was given using the Maple software .
出处 《吉林师范大学学报(自然科学版)》 2015年第3期41-47,共7页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目(10671057)
关键词 辅助函数法 非线性耦合KdV方程组 精确行波解 auxiliary functions nonlinear coupled KdV equations exact travelling wave solution
  • 相关文献

参考文献3

二级参考文献5

共引文献45

同被引文献17

  • 1JianlanHU,ZhiLI.Exact traveling wave solutions of some nonlinear physical models. Ⅱ. Coupled KdV type equations[J].Communications in Nonlinear Science and Numerical Simulation,2000,5(4):162-169. 被引量:4
  • 2孙冬梅,李永新,卜雄洙.一种使用正交函数的非线性系统建模方法[J].南京理工大学学报,2004,28(6):612-616. 被引量:2
  • 3Zachary Dutton, Michael Budde, Christopher Slowe, and Lane Vestergaard Hau. Observation of Quantum Shock Waves Created with Ultra- Compressed Slow Light Pulses in a Bose-Einstein Condensate [J]. Science,2001,27:663 -668. 被引量:1
  • 4Nagy. D, Domokos. P, Vukics. A, Ritsch. H. Nonlinear quantum dynamics of two BEC modes dispersivelycoupled by an optical cavity [ J ]. The European Physical Journal D. 2009,55:659 -668. 被引量:1
  • 5Liu. W. M ,Fan. W. B ,Zheng. W. M,et al. Quantum Tunneling of Bose-EinsteinCondensates in Optical Lattices under Gravity[ J]. Phys. Rev. A, 2002,88 : 170408 - 170416. 被引量:1
  • 6Jie Liu, Chuanwei Zhang, Mark G. Raizen, et al. Transition to instability in a periodically kicked Bose-Einstein condensate on a ring [ J ]. Phys. Rev. A ,2009,79:033401 - 033412. 被引量:1
  • 7Ancilotto. F, Salasnich. L, and Toigo. F. de Josephson effect with Fermi gases in the Bose-Einstein regime [ J ]. Phys. Rev. A, 2009,79:033627 - 033636. 被引量:1
  • 8Adhikari. S. K, and Luca Salasnich. Superfluid Bose-Fermi mixture from weak coupling to unitarity[ J]. Phys. Rev. A ,2008,78:043616 - 043625. 被引量:1
  • 9Kunal K. Das. Bose-Fermi Mixtures in One Dimension[J]. Phys. Rev. A,2003,90:170403 - 170415. 被引量:1
  • 10Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, et al. Theory of Bose-Einstein conden-sation in trapped gases [ J ]. Rev. Mod. Phys. , 1999:71 : 463 - 473. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部