摘要
讨论一类四阶微分方程m点边值问题{u^((4))(t)+h(t)f(u)=0,u(0)=u'(0)=u″(0)=0,u″(1)=∑m=2i=1β_iu″(η_i),其中,η_i∈(0,1),0<η_1<η_2<…<η_(m-2)<1,β_i∈[0,∞)且m=2∑i=1β_iη_i<1.通过与一个线性算子相关的第一特征值的讨论,运用不动点指数定理,得到正解存在的结果,最后给出一个例子用以说明定理的应用.
The existence of positive solutions for the fourth-order m-point boundary value problem {u^((4))(t)+h(t)f(u)=0,u(0)=u'(0)=u″(0)=0,u″(1)=∑m=2i=1β_iu″(η_i) is considered under some conditions concerning the first eigenvalue of the relevant linear operator,where η_i∈(0,1),0η_1η_2…η_(m-2)1,β_i∈[0,∞) with m=2∑i=1β_iη_i1.The existence of positive solutions is proved by means of fixed point index theory,and an example is given to show the application of the result.
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2017年第6期791-796,共6页
Journal of Sichuan Normal University(Natural Science)
基金
黑龙江省青年科学基金(QC2009C99)
大庆市科技计划(szdfy-2015-63)
关键词
四阶微分方程
M点边值问题
正解
锥
不动点指数
fourth-order equation
m-point boundary value problem
positive solution
cone
fixed point index