摘要
应用锥理论和不动点指数方法,在与相应的线性算子第一特征值有关的条件下,获得了一类四阶非线性常微分方程两点边值问题{-u(4)(t)t=f(t,u(t)),≤t≤1,u(0)=u′(0)=u′(1)=u′″(1)=0正解的存在性.
By applying the theory of fixed point index and the cone theory, the existence of positive solutions of two-point boundary value problems for the fourth-order nonlinear differential equation {-u(4)(t)=f(t,u(t)),0〈t〈1,u(0)=u'(0)=u'(1)=u'''(1)=0 is considered under some conditions concerning the first eigenvalue corresponding to the rele- vant linear operator.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第8期229-235,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(10971179)
宿迁学院科研基金(2011KY10)
关键词
非线性边值问题
正解
不动点指数
锥
nonlinear boundary value problem
positive solution
Fixed point index
Cone