摘要
讨论四阶常微分方程的m点边值问题u(4)(t)+h(t)f(u)=0 u(0)=u′(0)=u″(0)=0 u″(1)=∑m-2 i=1βiu″(ηi),其中ηi∈(0,1),0<η1<η2<…<ηm-2<1,βi∈[0,∞)且∑m-2 i=1βiηi<1。在一定的假设条件下,得到四阶微分方程m点边值问题至少存在两个正解。
M-point boundary value for fourth order ordinary differential equations is the focus in this paper.u(4)(t)+h(t)f(u)=0 u(0)=u′(0)=u″(0)=0 u″(1)=∑m-2 i=1βiu″(ηi)Here,ηi∈(0,1),0<η1<η2<…<ηm-2<1,βi∈[0,∞)and∑m-2 i=1βiηi<1.Under certain conditions,there are two possible positive solutions.
作者
赵微
ZHAO Wei(Department of Teaching Education of Daqing Normal University,Daqing,Heilongjiang 163712,China)
出处
《大庆师范学院学报》
2019年第6期82-86,共5页
Journal of Daqing Normal University
基金
大庆市指导性科技计划项目“分数阶时滞系统控制研究”(zd-2017-49)
关键词
边值问题
锥
正解
boundary value problem
cone
positive solution