期刊文献+

基于卷积神经网络的无线电信号搜索 被引量:1

Radio Signal Searching Based on Convolution Neural Network
下载PDF
导出
摘要 针对军事侦察或干扰查找环节解决方案较少、已有方案算法速度慢、准确度低的问题,提出一种采用卷积神经网络的无线电信号快速查找方法。该方法将卷积神经网络应用于无线电监测领域,通过数据预处理、参数训练、信号匹配3个步骤实现信号的快速搜索。实验结果表明:该方法查找速度快,精度达到98%,并且有效减少对信号复杂参数的依赖,在无线电信号快速搜索方面的良好性能。 Aiming at the problem that a few of solutions about military reconnaissance or interference detect, low calculation speed of current algorithm and low correctness, put forward a radio signal quick find method by using convolution neural network. The method uses convolution neural network in radio detecting field, and realizes signal quick searching by data pretreatment, parameter training, and signal matching. The test results show that the method is fast, at the same time the search accuracy is about 98%, and effectively reduce the dependence on the complex parameters of the signal. Test results also indicate the great performance in terms of quick search of radio signals.
出处 《兵工自动化》 2017年第10期88-92,共5页 Ordnance Industry Automation
关键词 卷积神经网络 深度学习 无线电 频谱 军事侦察 干扰查找 convolution neural network deep learning radio frequency spectrum military reconnaissance interference detect
  • 相关文献

参考文献6

二级参考文献67

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 3廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 4Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307. 被引量:1
  • 5LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324. 被引量:1
  • 6Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113. 被引量:1
  • 7Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824. 被引量:1
  • 8Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93. 被引量:1
  • 9Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229. 被引量:1
  • 10Y Le Cun, U Muller, J Ben, E Cosatto, B Flepp. Off-road obstacle avoidance through end-to-end learning [M]. Advances in Neural Information Processing Systems. USA: MIT Press, 2005. 被引量:1

共引文献208

同被引文献9

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部