期刊文献+

基于支持向量机的手写体数字识别 被引量:7

Handwritten Number Recognition Based on Support Vector Machine
下载PDF
导出
摘要 支持向量机的手写体数字识别中,采用美国邮政服务数据库。并取多个2层神经网络中的最好者得出2层神经网络结果,专门设计5层卷积神经网络Lenetl。所有的结果均直接采用点阵输入,将像素值归正到相应区域间,且不施加任何预处理。该方法与人工分类、神经网络、决策树等方法比较,其测试误差低,测试速度高。 Handwritten number recognition based on support vector machine adopts the US post service database. Moreover, it calculate the two-layer nerve network results based on several best two-layer nerve networks and design five-layer convolution nerve networks Lenetl. All results are inputted by using lattice input. The image point value is sent to the corresponding area without pretreatment. Compared with artificial classification, nerve network, and decision tree, its test error is low and the speed is high.
作者 尚磊 刘风进
出处 《兵工自动化》 2007年第3期39-41,共3页 Ordnance Industry Automation
关键词 支持向量机 手写体数字识别 卷积神经网络 SVM (Support Vector Machine) Handwritten number recognition Convolution nerve network
  • 相关文献

参考文献5

  • 1李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004.. 被引量:81
  • 2许建华.统计学习理论[M].北京:清华大学出版社,2000. 被引量:2
  • 3C J C Burges.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery,1998,2 (2):41-50. 被引量:1
  • 4Sanna.Poyhonen.Fault diagnostics of an Electrical Machine with Multiple Support Vector Classifiers[C].Vancouver.Canada:In Proceedings of 2002 IEEE International Symposium on Intelligent Control,2002.373-378. 被引量:1
  • 5John E Hehtel.Performance Monitoring of Gas Turbine with Inflight Data[R].Flight Operations Engineering Report.No.29,Appendix C Pratt & Whitney Aircraft.1976. 被引量:1

共引文献80

同被引文献46

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部