期刊文献+

基于PSO-BP算法的规范手写体数字离线识别 被引量:1

Standard handwritten form numeral off-line recognition based on PSO-BP neural network
下载PDF
导出
摘要 针对BP算法存在的易陷入局部极小点、收敛速度慢、所设计的网络泛化能力不能保证等问题,提出了一种基于粒子群优化算法(PSO)的BP(PSO-BP)网络的权值调整新方法。该算法在基本BP算法的误差反传调整权值的基础上,再引入PSO算法的权值修正,从而建立了基于PSO-BP网络模型。基于此模型设计了规范手写体数字识别的分类器,采用随机手写数字样本进行了仿真实验,结果表明:PSO-BP算法提高了网络的稳定性,避免了BP算法容易进入平坦区、陷入局部极小等问题。 For BP algorithm has local minimum point easy, slow convergence and the generalization ability of network design can not be guaranteed and other issues, a particle swarm optimization ( PSO ) algorithm BP ( PSOBP)network is proposed, which can adjust the network value. On the basis of the basic BP algorithm backpropagation algorithm adjust weights, re-introduction PSO of the right to correction, which set up BP network model based on PSO algorithm. Handwritten numeral recognition classifier is designed based on this model, using random samples of the handwritten figure simulation results show that PSO-BP neural network algorithm enhances the stability of the network, avoids the BP algorithm easy access to fiat areas and a partial very small and so on.
作者 徐鹏
出处 《传感器与微系统》 CSCD 北大核心 2009年第9期9-11,共3页 Transducer and Microsystem Technologies
关键词 粒子群优化 BP神经网络 数字识别 particle swarm optimization(PSO) BP neural network numeral recognition
  • 相关文献

参考文献7

  • 1孙光民,张程,王鹏,邓超.基于非线性PCA神经网络的手写体字符识别[J].北京工业大学学报,2007,33(9):915-919. 被引量:5
  • 2Ha T M, Matthias Zimmermann, Horst Bunke. Off-line handwritten numeral string recognition by combining segmentation-based and segmentation-free methods [ J ]. Pattern Recognition, 1998,31 (3) : 257 --272. 被引量:1
  • 3Zhang Bailing, Fu Minyue, Yan Hong. A nonlinear neural network model of mixture of local principal component analysis : Application to handwritten digits recognition [ J ]. Pattern Recognition, 2001,34(2 ) :203 -214. 被引量:1
  • 4Simon Gter, Horst Bunke. HMM-based handwritten word recognition:On the optimization of the number of states, training iterations and Gaussian components [ J ]. Pattem Recognition, 2004, 37 (10) :2069 --2079. 被引量:1
  • 5尚磊,刘风进.基于支持向量机的手写体数字识别[J].兵工自动化,2007,26(3):39-41. 被引量:7
  • 6Liu Jinhui, Paul Gader. Neural networks with enhanced outlier rejection ability for off-line handwritten word recognition [ J ]. Pattern Recognition ,2002,35 ( 10 ) :2061 --2071. 被引量:1
  • 7Kennedy J,Eberhart R C. Particle swarm optimization[ C ]//Proceeding of 1995 IEEE International Conference on Neural Networks. New York, USA : IEEE, 1995 : 1942 --1948. 被引量:1

二级参考文献13

  • 1芮挺,沈春林,丁健,张金林.基于主分量分析的手写数字字符识别[J].小型微型计算机系统,2005,26(2):289-292. 被引量:22
  • 2李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004.. 被引量:81
  • 3许建华.统计学习理论[M].北京:清华大学出版社,2000. 被引量:2
  • 4C J C Burges.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery,1998,2 (2):41-50. 被引量:1
  • 5Sanna.Poyhonen.Fault diagnostics of an Electrical Machine with Multiple Support Vector Classifiers[C].Vancouver.Canada:In Proceedings of 2002 IEEE International Symposium on Intelligent Control,2002.373-378. 被引量:1
  • 6John E Hehtel.Performance Monitoring of Gas Turbine with Inflight Data[R].Flight Operations Engineering Report.No.29,Appendix C Pratt & Whitney Aircraft.1976. 被引量:1
  • 7WANG Peng, SUN Guang-min, ZHANG Xin-ming. Handwritten character recognition based on hybrid neural networks[C] //Proceedings of SPIE. USA: SPIE-Int Soc Opt Eng, 2001, 4555: 65-70. 被引量:1
  • 8LIU Cheng-lin, KIM In-jung, KIM Jin-H. Model-based stroke extraction and matching for handwritten Chinese character recognition[J]. Pattern Recognition, 2001, 34: 2339-2352. 被引量:1
  • 9LIU C L, NAKAGAWA M. Precise candidate selection for large character set recognition by confidence evaluation[J]. IEEE Trans Pattern Anal Mach Intell, 2000, 22(6) : 636-642. 被引量:1
  • 10NISHIDA H. Model-based shape matching with structural feature grouping[J ]. IEEE Trans Pattern Anal Mach Intell, 1995, 17(3): 315-320. 被引量:1

共引文献10

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部