期刊文献+

支持向量机在机械零件识别中的应用 被引量:8

Application of SVM in recognition of mechanical parts
下载PDF
导出
摘要 提出了一种将支持向量机(SVM)用于机械零件识别的方法。实验采用了97张零件图片,9类零件其中一部分作为训练样本,另一部分作为测试样本。提取零件的 Hu 矩作为特征向量,并将 BP神经网络与 SVM 进行了比较。实验结果表明,以多项式为核函数的 SVM 有较高的识别率。 A method for application of SVM in recognition of mechanical parts is presented in this paper. Hu moments of 97 samples of the mechanical parts in 9 types are taken as the feature vectors for their classification using SVM. Comparing with BP neural networks, the results indicate that SVM is of higher accuracy of pattern recognition.
出处 《电子技术应用》 北大核心 2008年第11期108-110,114,共4页 Application of Electronic Technique
关键词 支持向量机 零件识别 HU矩 BP神经网络 support vector machine parts recognition Hu moment BP neutral network.
  • 相关文献

参考文献11

二级参考文献13

共引文献283

同被引文献57

  • 1逄增治,史建杰,尹建芹,朱利民,李金屏.基于目标形态特征的工件自动分割方法[J].北京邮电大学学报,2019,42(5):119-126. 被引量:6
  • 2陈曦,鲁曦,任大呈.基于机器视觉的聚乙烯薄膜质量检测装置的设计[J].化工自动化及仪表,2012,39(7):866-868. 被引量:4
  • 3KUEI H M. Visual pattern recognition by moment invariants[J].IRE Transactions on Information Theory, 1962 ,IT-8 (2): 179-187. 被引量:1
  • 4Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 5Chapelle O,Vapnik V,Bousquet O,et al.Choosing Multiple Parameters for Support Vector Machines[J].Machine Learning,2002(1-3):131-159. 被引量:1
  • 6Bay H,Tuytelaars T,Van Gool L.Speeded-up robust features(SURF)[J].Computer Vision and Image Understanding,2008,110(3):346-359. 被引量:1
  • 7Viola P,Jones M J.Rapid object detection using a boosted cascade of simple features[C]//Conference on Computer Vision and Pattern Recognition,2001:511-518. 被引量:1
  • 8Brown M,Lowe D.Invariant features from interest point groups[C]//British Machine Vision Conference,2002:656-665. 被引量:1
  • 9Muja M,Lowe D G.Fast approximate nearest neighbors with automatic algorithm configuration[C]//International Conference on Computer Vision Theory and Applications,2009:331-340. 被引量:1
  • 10Liu T,Moore A W,Gray A,et al.An investigation of practical approximate nearest neighbor algorithms[C]//Advances in Neural Information Processing Systems,2004:825-832. 被引量:1

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部