期刊文献+

电动自行车事故和车牌使用影响因素分析 被引量:11

Assessing Factors Related to E-bike Crash and E-bike License Plate Use
下载PDF
导出
摘要 为分析电动自行车事故和车牌使用影响因素,采用问卷调查和电话访谈方式采集了宁波市862个电动自行车用户有效样本,利用统计学方法构建了Bivariate Probit(BP)联立方程模型,计算了显著影响因素的边际效应,量化分析了电动自行车事故和车牌使用影响因素效用,并检验了两者之间潜在的关联关系.结果表明:BP模型不仅可以识别电动自行车事故和车牌使用的影响因素,而且可以有效刻画两者之间的潜在联系;两者之间关联系数为-0.475,表明电动自行车车牌的使用可以降低电动自行车事故概率;模型结果显示性别、年龄、驾驶执照、家庭是否拥有小汽车、电动自行车驾龄、法律遵守程度、驾驶行为、危险感知度等具有统计显著性,是影响电动自行车事故和车牌使用的显著因素. In order to analyze the contributory factors associated with the e-bike involved crash and license plate use, 862 samples of Ningbo e-bike riders were collected using the questionnaire survey method and telephone interview survey method. Based on the statistical theory, a Bivariate Probit(BP) model is developed to simultaneously examine the factors that affect e-bike involved crash and e-bike license plate use among e-biker riders. Marginal effects for contributory factors are calculated to quantify their impacts on the outcomes. The results show that the BP model can not only identify the affecting factors for e-bike involved crash and license plate use, but also reflect potential relationships between them; the correlation parameter of the e-bike involved crash and license plate use is-0.475, indicating that e-bike license plate use can reduce the probability of the e-bike involved crash; several contributory factors, including gender, age group, driving license, car in household, experiences in using e-bike, law compliance, and aggressive driving behaviors are found to have significant impacts on both of e-bike involved crash and license plate use.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2017年第3期229-234,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 浙江省公益技术应用研究计划项目(2016C33256) 浙江省自然科学基金(LY17E080013) 宁波市自然科学基金(2015A610298)~~
关键词 交通工程 事故影响因素 BIVARIATE Probit(BP)模型 电动自行车 车牌使用 traffic engineering contributory factors Bivariate Probit model electric bicycle license plate use
  • 相关文献

参考文献1

二级参考文献15

  • 1Lum K M, Halim H. A before-and-after study on green signal countdown device installation[J]. Transportation Research Part F: Traffic Psychology and Behavior, 2006, 9(1): 29 -41. 被引量:1
  • 2WANG Fen, TANG Ke-shuang, LI Ke-ping. A stochastic computational model for yellow time determination and its appli- cation[J]. Journal of Advanced Transportation, 2015, 49 (3) :457 - 474. 被引量:1
  • 3TANG Ke-shuang, XU Yan-qing, WANG Peng-fei, et al. Impacts of flashing green on dilemma zone behavior at high- speed intersections: Empirical study in China[J]. Journal of Transportation Engineering, 2015, 04015005 (7): 1 -7. 被引量:1
  • 4Factor R, Prashker J N, Mahalel D. The flashing green light paradox[J]. Transportation Research Part F, 2012, 15(3) :279 -288. 被引量:1
  • 5TANG Ke-shuang, Kuwahara M, Tanaka S. Design of intergreen times based on safety reliability [J]. Transportation Research Record : Journal of the Transportation Research Board, 2011, 2259 ( 1 ) : 213 - 222. 被引量:1
  • 6Mahalel D, Zaidel D M. Safety evaluation of a flashing-green light in a traffic signal[J]. Traffic Engineering and Control, 1985, 26(2):79-81. 被引量:1
  • 7Koll H, Bader M, Axhausen K W. Driver behaviour during flashing green before amber: A comparative study[J].Acci- dent Analysis & Prevention, 2004, 36(2): 273 -280. 被引量:1
  • 8Bonneson J A, Zimmerman K, Brewer M A. Engineering countermeasures to reduce red-light-running[R]. Texas Trans- portation Institute, Texas A & M University System, 2002. 被引量:1
  • 9Gazis, Herman, Maredudin. The problem of the amber signal in traffic flow[J]. Operations Research, 1960, 8( 1 ) : 112 - 132. 被引量:1
  • 10TANG Ke-shuang, DONG Sheng, WANG Fen, et al. Behavior of riders of electric bicycles at onset of green and yellow at signalized intersections in China[J].Transportation Research Record: Journal of the Transportation Research Board, 2012, 2317(1): 85-96. 被引量:1

共引文献4

同被引文献73

引证文献11

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部