期刊文献+

基于随机森林的电动自行车骑行者事故伤害程度影响因素分析 被引量:24

Factors Affecting Electric Bicycle Rider Injury in Accident Based on Random Forest Model
下载PDF
导出
摘要 为研究电动自行车道路交通事故对骑行者伤害程度影响因素的重要性排序,分析电动自行车骑行者事故伤害程度的影响因素。收集某市2013-2015年电动自行车交通事故数据,对其进行描述性统计分析,从中选出与交通事故严重程度相关的22个影响因素。利用随机森林模型对电动自行车骑行者受伤严重程度进行预测,并对相关因素的重要程度进行排序。研究表明,影响电动自行车骑行者受伤严重程度的最主要因素依次为车辆间事故类型、受伤部位、道路物理隔离类型等。针对交通事故相关因素提出改进建议,研究结论可为电动自行车事故预防提供决策参考。 This study analyzed the crucial factors that affect the injury degree of electric bicycle riders in the accident and ranked the factors based on their significance.The study collected electric bicycle traffic accident data in a city from 2013 to 2015,and then performed the descriptive statistical analysis.22 factors related to the severity of traffic accidents were selected for analysis.The random forest model was used to predict the severity of electric bicycle rider injuries,and then rank the significance of the impact factors.The result indicates that the most significant factors affecting the severity of electric bicycle rider injuries in the accident are as follows:the type of accident,the injury is on which part of the body,and the separation type on the road,etc.The study also puts forward suggestions to improve bicycle rider's safety in terms of related factors,which provide reference for prevention of electric bicycle accident and relevant decision-makings in the safety management.
作者 李英帅 张旭 王卫杰 居潇凡 LI Ying-shuai;ZHANG Xu;WANG Wei-jie;JU Xiao-fan(School of Transportation Engineering,Nanjing Tech University,Nanjing 211816,China;College of Traffic&Transportation,Chongqing Jiaotong University,Chongqing 400074,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2021年第1期196-200,共5页 Journal of Transportation Systems Engineering and Information Technology
基金 道路交通安全公安部重点实验室开放课题(2017ZDSYSKFKT01) 南京工业大学青年教师科研启动基金(3827400205)。
关键词 交通工程 影响因素 随机森林 电动自行车 事故伤害程度 traffic engineering impact factors random forest electric bicycles accident injury degree
  • 相关文献

参考文献8

二级参考文献54

  • 1马国忠,明士军,吴海涛.电动自行车安全特性分析[J].中国安全科学学报,2006,16(4):48-52. 被引量:39
  • 2GA/T859-2010.中华人民共和国公安部.道路交通事故处理信息数据结构[S]. 被引量:2
  • 3Chang H, Yeh T. Risk factors to driver fatalities in single-vehicle crashes., comparisons between non-mo- torcycle drivers and motorcyclists [J]. Journal of Transportation Engineering, 2006,132 ( 3 ) : 227-236. 被引量:1
  • 4Malyshkina N, Mannering F. Empirical assessment of the impact of highway design exceptions on the fre- quency and severity of vehicle accidents[J]. Accident Analysis and Prevention, 2010,42(1)..131-139. 被引量:1
  • 5Yamamoto T, Shankar V, Bivariate ordered-response probit model of driver's and passenger's injury se- verities in collisions with fixed objects[J]. Accident Anal-ysis and Prevention, 2004,36 (5) : 869-876. 被引量:1
  • 6Helai H,Chor C, Haque M. Severity of driver injury and vehicle damage in traffic crashes at intersections: a Bayesian hierarchical analysis[J]. Accident Analysis and Prevention, 2008,40 ( 1 ) : 45-54. 被引量:1
  • 7Lee J, Mannering, F. Impact of roadside features on the frequency and severity of run-off-roadway acci- dentsan empirical analysis[J]. Accident Analysis and Prevention, 2002,34(2) : 149-161. 被引量:1
  • 8Eluru N, Bhat C, Hensher D. A mixed generalized or-dered response model for examining pedestrian and bi- cyclist injury severity level in traffic crashes[J]. Accident Analysis and Prevention, 2008,40 ( 3 ) : 1033-1054. 被引量:1
  • 9Malyshkina N, Mannering F. Markov switching mul- tinomial logit model: an application to accident-injury severities E J 1. Accident Analysis and Prevention, 2009,41(4) : 829-838. 被引量:1
  • 10Delen D, Sharda R, Bessonov M. Identifying signifi- cant predictors of injury severity in traffic accidents using a series of artificial neural networks[J]. Acci- dent Analysis and Prevention, 2006,38 (3) : 434-444. 被引量:1

共引文献222

同被引文献139

引证文献24

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部