期刊文献+

基于协同训练与集成学习的极化SAR图像半监督分类 被引量:1

A Semi-supervised Classification Method for Fully Polarimetric SAR Imagery based on Co-training and Ensemble Learning
原文传递
导出
摘要 针对全极化SAR图像在监督分类中存在的人工标注样本费时费力以及多种极化特征未能综合利用等问题,提出一种基于协同训练与集成学习的极化SAR图像半监督分类方法。该方法以支持向量机作为半监督学习的基分类器,通过协同学习机制将多种极化目标分解下的特征有效结合,实现同时利用无标注和有标注样本,最后通过集成学习进一步提高分类模型的泛化能力。在AIRSAR和EMISAR影像上的实验表明,该方法能充分利用不同特征的特点,在较少人工标注的样本下也能获得较高的分类精度。 Supervised classification methods usually require adequate labeled samples which are difficult and time-consuming to obtain,especially in synthetic aperture radar images.In order to make full use of the information of the features by multiple polarization target decomposition methods and the unlabeled samples,A semi-supervised classification method for fully polarimetric SAR imagery based on co-training and ensemble learning is proposed in this paper.The proposed semi-supervised classification method is based on Support Vector Machines(SVM)approach.The features using multiple polarization target decomposition methods are combined by using Co-training mechanism.Both the label and unlabeled samples are utilized for classifying via several co-trained semi-supervised learning models.Finally,the generalization ability of models can be improved by ensemble learning.Experimental results compared to conventional methods on three PolSAR data sets demonstrate that the proposed method can achieve higher classification accuracy with a small number of labeled samples.
出处 《遥感技术与应用》 CSCD 北大核心 2017年第2期380-385,共6页 Remote Sensing Technology and Application
基金 国家自然科学基金项目(41301449) 江苏省测绘地理信息科研项目(JSCHKY201501) 地理空间信息工程国家测绘地理信息局重点实验室经费资助项目(201324)
关键词 极化合成孔径雷达 目标分解 图像分类 半监督学习 协同训练 集成学习 Polarimetric synthetic aperture radar Target decomposition Image classification Semi-supervised learning Co-training Ensemble learning
  • 相关文献

参考文献2

二级参考文献25

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2高明星,杨健,彭应宁.极化雷达遥感中目标特征提取[J].电波科学学报,2004,19(4):418-421. 被引量:4
  • 3Settles B. Active Learning Literature Survey, Computer Science Technical Report 1648, University of Wisconsin- Madison, USA, 2009. 3-4. 被引量:1
  • 4Dasgupta S. Coarse sample complexity bounds for active learning. Advances in Neural Information Processing Sys- tems. Cambridge: The MIT Press, 2006. 235-242. 被引量:1
  • 5Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM Inter- national Conference on Multimedia. New York, USA: ACM, 2001. 107-118. 被引量:1
  • 6Tong S, Koller D. Support vector machine active learning with applications to text classification. The Journal of Ma- chine Learning Research, 2002, 2:45-66. 被引量:1
  • 7Seung H S, Opper M, Sompolinsky H. Query by commit- tee. In: Proceedings of the 5th Annual Workshop on Com- putational Learning Theory. New York, USA: ACM, 1992. 287-294. 被引量:1
  • 8Dagan I, Engelson S P. Committee-based sampling for train- ing probabilistic classifiers. In: Proceedings of the 12th International Conference on Machine Learning. California, USA: Morgan Kaufmann, 1995. 150-157. 被引量:1
  • 9Hoi S C H, Jin R, Lyu M R. Batch mode active learning with applications to text categorization and image retrieval. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1233-1248. 被引量:1
  • 10Joshi A J, Porikli F, Papanikolopoulos N. Multi-class ac- tive learning for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition. Miami, USA: IEEE, 2009. 2372-2379. 被引量:1

共引文献79

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部