期刊文献+

面向类别比例偏移的半监督支持向量机方法 被引量:1

Shifted Label Proportion Aware Semi-supervised Support Vector Machine
下载PDF
导出
摘要 当未标记数据与有标记数据类别比例偏移较大时,半监督支持向量机性能不佳.基于此情况,文中提出面向类别比例偏移的半监督支持向量机方法.首先估计未标记数据类中心,然后对多个类别比例下的类中心进行最坏情况集成,从而提升半监督支持向量机的性能保障.实验表明,文中方法有效提升半监督支持向量机在类别比例偏移时的性能保障. When the label proportion of unlabeled data is far away from that of labeled data, direct supervised support vector machine ( SVM ) with only labeled data outperforms semi-supervised SVM ( S^3VM ) with unlabeled data. Thus, a shifted label proportion aware S^3VM(fairS^3VM) is proposed. Specifically, the label mean of unlabeled data is firstly estimated. Then multiple label means corresponding to multiple label proportions are integrated under the worst-case scenario. Experimental results show that the performance guarantee of S3 VMs is effectively improved when the label proportion is shifted.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第7期625-632,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金青年科学基金项目(No.61403186) 江苏省自然科学基金青年基金项目(No.BK20140613)资助~~
关键词 半监督学习 半监督支持向量机 类别比例偏移 集成方法 Semi-supervised Learning, Semi-supervised Support Vector Machine, Shifted Label Proportion, Ensemble Method
  • 相关文献

参考文献1

二级参考文献56

  • 1Chapelle O,Scholkopf B,Zien A. Semi-Supervised Learning[M].Cambridge,ma:the Mit Press,2006. 被引量:1
  • 2Zhu X J. Semi-supervised Learning Literature Survey.Technical Report 1530[R].Department of Computer Sciences,University of Wisconsin at Madison,Madison,WI,2006. 被引量:1
  • 3Zhou Z H,Li M. Semi-supervised learning by disagreement[J].Knowledge and Information Systems,2010,(03):415-439. 被引量:1
  • 4Shahshahani B M,Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J].IEEE Transactions on Geoscience and Remote Sensing,1994,(05):1087-1095. 被引量:1
  • 5Miller D,Uyar H. A mixture of experts classifier with learning based on both labelled and unlabelled data[A].Cambridge,ma:the Mit Press,1997.571-577. 被引量:1
  • 6Nigam K,McCallum A K,Thrun S,Mitchell T. Text classification from labeled and unlabeled documents using EM[J].Machine Learning,2000,(2-3):103-134. 被引量:1
  • 7Blum A,Mitchell T. Combining labeled and unlabeled data with co-training[A].New York,USA:ACM,1998.92-100. 被引量:1
  • 8Joachims T. Transductive inference for text classification using support vector machines[A].San Francisco,CA,USA,Morgan Kaufmann Publishers Inc,1999.200-209. 被引量:1
  • 9Zhu X J,Ghahramani Z,Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions[A].Menlo Park,ca:aaai Press,2003.912-919. 被引量:1
  • 10Zhou Z H. Semi-supervised learning by disagreement[A].Piscataway,NJ:IEEE,2008.93. 被引量:1

共引文献85

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部