期刊文献+

基于SOM神经网络的半监督分类算法 被引量:7

Semi-supervised Classification Algorithm Based on SOM Neural Network
下载PDF
导出
摘要 为提高半监督分类的性能,提出一种基于SOM神经网络的半监督分类算法SSC-SOM。结合SOM的聚类特性,基于先聚类后标记的思想,充分利用有标记样本和未标记样本训练SOM分类器;将聚类的形成和有标记样本分配到各个聚类中同时进行,并根据有标记样本计算各个聚类的聚类中心;在整个未标记样本的范围内,根据聚类中心,使用K近邻算法对未标记样本进行标记,挖掘未标记样本的隐含信息。在UCI数据集中进行分类实验,其结果表明,SSC-SOM的分类率比SSOM提高2.22%,且收敛性较好。 In order to improve the performance of semi-supervised classifier, a kind of semi-supervised classification algorithm SSCSOM is proposed. Based on the clustering characteristics of SOM and the Cluster-then-Label idea, labeled data and unlabeled data are all used to train SOM. The labeled samples are assigned to each cluster and the clusters form simultaneously. The clustering centers are work out. K-NN algorithm is adopted to label the unlabeled samples according to the clustering centers and the information from the unlabeled samples is mined. With UCI dataset, experiments were carried out and the results show that the classification rate of SSC-SOM increases by 2. 22 % than SSOM and the SSC-SOM method had good convergence.
作者 赵建华
出处 《西华大学学报(自然科学版)》 CAS 2015年第1期36-40,51,共6页 Journal of Xihua University:Natural Science Edition
基金 陕西省教育厅科研计划项目资助(12JK0748) 商洛学院科研项目资助(14SY006 14SKY007)
关键词 半监督学习 自组织特征映射神经网络 分类 聚类 semi-supervised learning SOM classification clustering
  • 相关文献

参考文献13

二级参考文献135

共引文献180

同被引文献76

  • 1荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11):3204-3208. 被引量:79
  • 2Zhou Z H, Chawla N V,Jin Y,et al. Big data opportunities and challenges: discussions from data analytics perspectives [j].IEEE Computational Intelligence Magazine,2014,9(4): 62-74. 被引量:1
  • 3Tan M, Tsang I W,Wang L. Towards ultrahigh dimensional feature selection for big data[j]. Journal of Machine Learning Research,2014,15(2):1371-1429. 被引量:1
  • 4Yoo C, Ramirez L, Liuzzi J. Big data analysis using modem statistical and machine learning methods in medicine [j]. InternationalNeurourology Journal, 2014,18(2): 50-57. 被引量:1
  • 5Hansen T J,Mahoney M W. Semi-supervised eigenvectors for large-scale locally-biased learning [j]. Journal of Machine LearningResearch,2014,15(11) :3691-3734. 被引量:1
  • 6Hoi Sch, Wang J,Zhao P. LIBOL: A library for online learning algorithms [J]. Journal of Machine Learning Research, 2014, 15(1):495-499. 被引量:1
  • 7Motai Y. Kernel association for classification and prediction: a survey [j]. IEEE Trans Neural Netw Learn Syst, 2014,26(2):208-223. 被引量:1
  • 8Zheng H,Ye Q,Jin Z. A novel multiple kernel sparse representation based classification for face recognition [j]. Ksii Transactionson Internet & Information Systems,2014,8(4) : 1463-1480. 被引量:1
  • 9Shrivastava A,Pillai J K,Patel V M. Multiple kernel-based dictionary learning for weakly supervised classification[J]. PatternRecognition ?2015(48): 2667-2675. 被引量:1
  • 10Orabona F,Keshet J, Caputo B. Bounded kernel-based online learning [j]. Journal of Machine Learning Research,2009,10(6):2643-2666. 被引量:1

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部